Journal of Experimental Psychology : General The Hippocampus : Part of an Interactive Posterior Representational System Spanning Perceptual and Memorial Systems

The hippocampus has frequently been viewed as a core long-term memory structure, separate from brain structures mediating other cognitive functions such as working memory and perception. Much the same is true of other medial temporal lobe (MTL) structures such as the parahippocampal gyrus and the perirhinal cortex. Recent evidence suggests, instead, that these latter structures are also important for certain perceptual functions, leading many to propose a representational account of MTL that defines its functions in terms of what is being represented, rather than how long this representation lasts, or which psychological function is being invoked. We discuss a common framework within which perception and memory are seen as involving many, if not most, of the structures in the ventral representational stream, critically dependent on extensive feedforward and feedback processes. A variety of perceptual and memorial phenomena are discussed within this framework, and it is concluded that the hippocampus is in many ways like its neighbors in the MTL, yet has some distinct properties that account for its unique role in episodic memory.

[1]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[2]  Morris Moscovitch,et al.  Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions , 2000, Nature Neuroscience.

[3]  D. Hassabis,et al.  Deconstructing episodic memory with construction , 2007, Trends in Cognitive Sciences.

[4]  Pieter R. Roelfsema,et al.  Boundary assignment in a recurrent network architecture , 2007, Vision Research.

[5]  Russell A. Epstein,et al.  Perceptual deficits in amnesia: challenging the medial temporal lobe ‘mnemonic’ view , 2005, Neuropsychologia.

[6]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[7]  Neil Burgess,et al.  Attractor Dynamics in the Hippocampal Representation of the Local Environment , 2005, Science.

[8]  L. Nadel,et al.  Memory consolidation, retrograde amnesia and the hippocampal complex , 1997, Current Opinion in Neurobiology.

[9]  D. Kumaran,et al.  Double Dissociation between Hippocampal and Parahippocampal Responses to Object–Background Context and Scene Novelty , 2011, The Journal of Neuroscience.

[10]  Morgan D. Barense,et al.  Cerebral Cortex doi:10.1093/cercor/bhq004 Influence of Conceptual Knowledge on Visual Object Discrimination: Insights from , 2010 .

[11]  Mary A Peterson,et al.  Implicit memory for novel figure-ground displays includes a history of cross-border competition. , 2003, Journal of experimental psychology. Human perception and performance.

[12]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[13]  Pascale Piolino,et al.  Episodic autobiographical memories over the course of time: Cognitive, neuropsychological and neuroimaging findings , 2009, Neuropsychologia.

[14]  Gustavo Deco,et al.  Predictive Coding in the Visual Cortex by a Recurrent Network with Gabor Receptive Fields , 2001, Neural Processing Letters.

[15]  Moser Edvard,et al.  Pattern Separation in the Dentate Gyrus , 2009 .

[16]  James L. McClelland,et al.  Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. , 1995, Psychological review.

[17]  Morgan D Barense,et al.  Interactions of memory and perception in amnesia: the figure-ground perspective. , 2012, Cerebral cortex.

[18]  Thomas Serre,et al.  A quantitative theory of immediate visual recognition. , 2007, Progress in brain research.

[19]  Janneke F. M. Jehee,et al.  Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex , 2012, Neuron.

[20]  Kay Henning Brodersen,et al.  Disentangling Spatial Perception and Spatial Memory in the Hippocampus: A Univariate and Multivariate Pattern Analysis fMRI Study , 2013, Journal of Cognitive Neuroscience.

[21]  C. Shatz Emergence of order in visual system development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Tamás Geszti DYNAMICS OF RETRIEVAL , 1990 .

[23]  L. Nadel The hippocampus and context revisited. , 2008 .

[24]  A. Damasio,et al.  Convergence and divergence in a neural architecture for recognition and memory , 2009, Trends in Neurosciences.

[25]  Lora T. Likova,et al.  Occipital network for figure/ground organization , 2008, Experimental Brain Research.

[26]  J. Changeux,et al.  Experimental and Theoretical Approaches to Conscious Processing , 2011, Neuron.

[27]  L. Squire Memory systems of the brain: A brief history and current perspective , 2004, Neurobiology of Learning and Memory.

[28]  James J. Knierim,et al.  Ensemble Dynamics of Hippocampal Regions CA3 and CA1 , 2004, Neuron.

[29]  Rosemary A. Cowell,et al.  Components of recognition memory: Dissociable cognitive processes or just differences in representational complexity? , 2010, Hippocampus.

[30]  L. Saksida,et al.  Perirhinal cortex resolves feature ambiguity in complex visual discriminations , 2002, The European journal of neuroscience.

[31]  Nikolaus Weiskopf,et al.  Detecting Representations of Recent and Remote Autobiographical Memories in vmPFC and Hippocampus , 2012, The Journal of Neuroscience.

[32]  C. Stark,et al.  Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus , 2008, Science.

[33]  Dwight J. Kravitz,et al.  Deconstructing visual scenes in cortex: gradients of object and spatial layout information. , 2013, Cerebral cortex.

[34]  K. Deisseroth,et al.  Dynamics of Retrieval Strategies for Remote Memories , 2011, Cell.

[35]  Richard N Henson,et al.  Predictive, interactive multiple memory systems , 2010, Hippocampus.

[36]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[37]  M. Sur,et al.  Rewiring cortex: the role of patterned activity in development and plasticity of neocortical circuits. , 1999, Journal of neurobiology.

[38]  Morgan D Barense,et al.  The perirhinal cortex modulates V2 activity in response to the agreement between part familiarity and configuration familiarity , 2012, Hippocampus.

[39]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[40]  Michael W. Spratling Predictive Coding as a Model of Response Properties in Cortical Area V1 , 2010, The Journal of Neuroscience.

[41]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[42]  L. Saksida,et al.  Memory, perception, and the ventral visual‐perirhinal‐hippocampal stream: Thinking outside of the boxes , 2007, Hippocampus.

[43]  Morgan D. Barense,et al.  The human medial temporal lobe processes online representations of complex objects , 2007, Neuropsychologia.

[44]  R. Henson,et al.  Episodic Reinstatement in the Medial Temporal Lobe , 2012, The Journal of Neuroscience.

[45]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[46]  C A Barnes,et al.  Representation of three‐dimensional objects by the rat perirhinal cortex , 2012, Hippocampus.

[47]  S. Dehaene,et al.  Imaging unconscious semantic priming , 1998, Nature.

[48]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[49]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  A. Treves,et al.  Theta-paced flickering between place-cell maps in the hippocampus , 2011, Nature.

[51]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[52]  Andy C. H. Lee,et al.  Behavioral / Systems / Cognitive Functional Specialization in the Human Medial Temporal Lobe , 2005 .

[53]  T. Bussey,et al.  Perceptual–mnemonic functions of the perirhinal cortex , 1999, Trends in Cognitive Sciences.

[54]  Mary A Peterson,et al.  Inhibitory competition between shape properties in figure-ground perception. , 2008, Journal of experimental psychology. Human perception and performance.

[55]  Li Zhaoping,et al.  Border Ownership from Intracortical Interactions in Visual Area V2 , 2005, Neuron.

[56]  Y. Miyashita,et al.  Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[58]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[59]  J. Changeux,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.5 May 2006 Conscious, preconscious, and subliminal processing: a testable taxonomy , 2022 .

[60]  D. Amaral,et al.  Hippocampal‐neocortical interaction: A hierarchy of associativity , 2000, Hippocampus.

[61]  Rosemary A. Cowell,et al.  Perirhinal cortex resolves feature ambiguity in configural object recognition and perceptual oddity tasks. , 2007, Learning & memory.

[62]  R. von der Heydt,et al.  A neural model of figure-ground organization. , 2007, Journal of neurophysiology.

[63]  A. Damasio Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition , 1989, Cognition.

[64]  T. Teyler,et al.  The hippocampal memory indexing theory. , 1986, Behavioral neuroscience.

[65]  Andy C. H. Lee,et al.  Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception , 2010, Neuropsychologia.

[66]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[67]  B. Gibson,et al.  Does orientation-independent object recognition precede orientation-dependent recognition? Evidence from a cuing paradigm. , 1994, Journal of experimental psychology. Human perception and performance.

[68]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[69]  L. Saksida,et al.  A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation , 2009, Science.

[70]  M Moscovitch,et al.  Hippocampal complex and retrieval of recent and very remote autobiographical memories: Evidence from functional magnetic resonance imaging in neurologically intact people , 2001, Hippocampus.

[71]  Michael W. Spratling Predictive coding as a model of biased competition in visual attention , 2008, Vision Research.

[72]  Elizabeth Salvagio,et al.  Competition-strength-dependent ground suppression in figure–ground perception , 2012, Attention, perception & psychophysics.

[73]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  D. Hassabis,et al.  Scene Construction in Amnesia: An fMRI Study , 2012, The Journal of Neuroscience.

[75]  Edward B. O'Neil,et al.  Distinct Familiarity-Based Response Patterns for Faces and Buildings in Perirhinal and Parahippocampal Cortex , 2013, The Journal of Neuroscience.

[76]  Victor A. F. Lamme,et al.  Confuse Your Illusion , 2013, Psychological science.

[77]  Emilio Kropff,et al.  Place cells, grid cells, and the brain's spatial representation system. , 2008, Annual review of neuroscience.

[78]  L. Nadel,et al.  Decay happens: the role of active forgetting in memory , 2013, Trends in Cognitive Sciences.

[79]  Richard N. A. Henson,et al.  Perception and Conception: Temporal Lobe Activity during Complex Discriminations of Familiar and Novel Faces and Objects , 2011, Journal of Cognitive Neuroscience.

[80]  Anne-Catherine Bachoud-Lévi,et al.  Object memory effects on figure assignment: conscious object recognition is not necessary or sufficient , 2000, Vision Research.

[81]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M Tsodyks,et al.  Attractor neural network models of spatial maps in hippocampus , 1999, Hippocampus.

[83]  M Moscovitch,et al.  fMRI studies of remote spatial memory in an amnesic person. , 2004, Brain and cognition.

[84]  Stephen Grossberg,et al.  Competitive Learning: From Interactive Activation to Adaptive Resonance , 1987, Cogn. Sci..

[85]  Lee Ryan,et al.  The effect of scene context on episodic object recognition: Parahippocampal cortex mediates memory encoding and retrieval success , 2007, Hippocampus.

[86]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[87]  B. Richmond,et al.  Role of perirhinal cortex in object perception, memory, and associations , 2001, Current Opinion in Neurobiology.

[88]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[89]  W. Scoville,et al.  LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS , 1957, Journal of neurology, neurosurgery, and psychiatry.

[90]  L. Nadel,et al.  Update on Memory Systems and Processes , 2011, Neuropsychopharmacology.

[91]  J. Aggleton Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function , 2012, Neuroscience & Biobehavioral Reviews.

[92]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  K. Norman How hippocampus and cortex contribute to recognition memory: Revisiting the complementary learning systems model , 2010, Hippocampus.

[94]  M. Moser,et al.  Optogenetic Dissection of Entorhinal-Hippocampal Functional Connectivity , 2013, Science.

[95]  H. Eichenbaum Memory on time , 2013, Trends in Cognitive Sciences.

[96]  J. Fuster Prefrontal Cortex , 2018 .

[97]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[98]  M. Moscovitch,et al.  Detailed descriptions of routes traveled, but not map‐like knowledge, correlates with tests of hippocampal function in older adults , 2011, Hippocampus.

[99]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[100]  Andy C. H. Lee,et al.  The hippocampus and visual perception , 2012, Front. Hum. Neurosci..

[101]  J. W. Rudy,et al.  The hippocampal indexing theory and episodic memory: Updating the index , 2007, Hippocampus.

[102]  L. Nadel,et al.  Context and conditioning: A place for space , 1980 .

[103]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[104]  M. Moser,et al.  Representation of Geometric Borders in the Entorhinal Cortex , 2008, Science.

[105]  Andy C. H. Lee,et al.  Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: Effects of viewpoint , 2009, Hippocampus.

[106]  H. Eichenbaum,et al.  Two functional components of the hippocampal memory system , 1994, Behavioral and Brain Sciences.

[107]  Nikolaus Weiskopf,et al.  Decoding Representations of Scenes in the Medial Temporal Lobes , 2011, Hippocampus.

[108]  L. Davachi,et al.  What Constitutes an Episode in Episodic Memory? , 2011, Psychological science.

[109]  G. Winocur,et al.  Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. , 2004, Cerebral cortex.

[110]  Refractor Vision , 2000, The Lancet.

[111]  Henry Kennedy,et al.  Long-distance feedback projections to area V1: Implications for multisensory integration, spatial awareness, and visual consciousness , 2004, Cognitive, affective & behavioral neuroscience.

[112]  M. Peterson,et al.  Object-centered attentional biases and object recognition contributions to scene segmentation in left- and right-hemisphere-damaged patients , 1998, Psychobiology.

[113]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.