Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features

We present a 3D model-based visual tracking approach using edge and keypoint features in a particle filtering framework. Recently, particle-filtering-based approaches have been proposed to integrate multiple pose hypotheses and have shown good performance, but most of the work has made an assumption that an initial pose is given. To ameliorate this limitation, we employ keypoint features for initialization of the filter. Given 2D–3D keypoint correspondences, we randomly choose a set of minimum correspondences to calculate a set of possible pose hypotheses. Based on the inlier ratio of correspondences, the set of poses are drawn to initialize particles. After the initialization, edge points are employed to estimate inter-frame motions. While we follow a standard edge-based tracking, we perform a refinement process to improve the edge correspondences between sampled model edge points and image edge points. For better tracking performance, we employ a first-order autoregressive state dynamics, which propagates particles more effectively than Gaussian random walk models. The proposed system re-initializes particles by itself when the tracked object goes out of the field of view or is occluded. The robustness and accuracy of our approach is demonstrated using comparative experiments on synthetic and real image sequences.

[1]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[2]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  Clark F. Olson,et al.  Automatic target recognition by matching oriented edge pixels , 1997, IEEE Trans. Image Process..

[4]  João M. F. Xavier,et al.  On the Generalization of AR Processes To Riemannian Manifolds , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[5]  Henrik I. Christensen,et al.  Real-time 3D model-based tracking using edge and keypoint features for robotic manipulation , 2010, 2010 IEEE International Conference on Robotics and Automation.

[6]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[7]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[8]  Luc Van Gool,et al.  Smart particle filtering for 3D hand tracking , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[9]  Е. А. Краснобаев Распознавание дорожных знаков на изображениях методом Speeded Up Robust Features (SURF) , 2013 .

[10]  Éric Marchand,et al.  CAD Model-based Tracking and 3D Visual-based Control for MEMS Microassembly , 2010, Int. J. Robotics Res..

[11]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[12]  Gregory S. Chirikjian,et al.  Error propagation on the Euclidean group with applications to manipulator kinematics , 2006, IEEE Transactions on Robotics.

[13]  BlakeAndrew,et al.  C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .

[14]  Gregory S. Chirikjian,et al.  Nonparametric Second-order Theory of Error Propagation on Motion Groups , 2008, Int. J. Robotics Res..

[15]  Frank Chongwoo Park,et al.  Visual Tracking via Particle Filtering on the Affine Group , 2008, 2008 International Conference on Information and Automation.

[16]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[17]  Éric Marchand,et al.  Robust model-based tracking for robot vision , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  Bradley J. Nelson,et al.  A CAD model based tracking system for visually guided microassembly , 2005, Robotica.

[19]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Éric Marchand,et al.  Real-time 3D model-based tracking: combining edge and texture information , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[21]  Gregory S. Chirikjian,et al.  Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map , 2008, Robotica.

[22]  Éric Marchand,et al.  Using multiple hypothesis in model-based tracking , 2010, 2010 IEEE International Conference on Robotics and Automation.

[23]  Bradley J. Nelson,et al.  Real-time Rigid-body Visual Tracking in a Scanning Electron Microscope , 2007, 2007 7th IEEE Conference on Nanotechnology (IEEE NANO).

[24]  Danica Kragic,et al.  Integration of Model-based and Model-free Cues for Visual Object Tracking in 3D , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[25]  Vincent Lepetit,et al.  Combining edge and texture information for real-time accurate 3D camera tracking , 2004, Third IEEE and ACM International Symposium on Mixed and Augmented Reality.

[26]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[27]  Rama Chellappa,et al.  Fast directional chamfer matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Tom Drummond,et al.  Tightly integrated sensor fusion for robust visual tracking , 2004, Image Vis. Comput..

[29]  Andrew Calway,et al.  Real-Time Camera Tracking Using Known 3D Models and a Particle Filter , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[30]  David W. Murray,et al.  Full-3D Edge Tracking with a Particle Filter , 2006, BMVC.

[31]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[32]  Maher Moakher,et al.  To appear in: SIAM J. MATRIX ANAL. APPL. MEANS AND AVERAGING IN THE GROUP OF ROTATIONS∗ , 2002 .

[33]  Andrew Zisserman,et al.  Robust Object Tracking , 2001 .

[34]  Stefano Soatto,et al.  Monte Carlo filtering on Lie groups , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[35]  Roberto Cipolla,et al.  Real-Time Visual Tracking of Complex Structures , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Frank Chongwoo Park,et al.  Particle Filtering on the Euclidean Group , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[37]  Tom Drummond,et al.  Dynamic measurement clustering to aid real time tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[38]  M. Vincze,et al.  BLORT-The Blocks World Robotic Vision Toolbox , 2010 .

[39]  Takeo Kanade,et al.  GPU-accelerated real-time 3D tracking for humanoid locomotion and stair climbing , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[41]  T. Mörwald Edge Tracking of Textured Objects with a Recursive Particle Filter , 2009 .

[42]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.