The Parvocellular LGN Provides a Robust Disynaptic Input to the Visual Motion Area MT

[1]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[2]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[3]  Alan B Saul,et al.  Temporal properties of inputs to direction-selective neurons in monkey V1. , 2005, Journal of neurophysiology.

[4]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[5]  P. Strick,et al.  Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate , 2003, The Journal of Neuroscience.

[6]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[7]  J. Kaas,et al.  Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys , 2002, Neuron.

[8]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[9]  R. L. Valois,et al.  Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity , 2000, Vision Research.

[10]  P. Strick,et al.  Rabies as a transneuronal tracer of circuits in the central nervous system , 2000, Journal of Neuroscience Methods.

[11]  J. Malpeli,et al.  Relationship between laminar topology and retinotopy in the rhesus lateral geniculate nucleus: Results from a functional atlas , 1999, The Journal of comparative neurology.

[12]  J. Kaas,et al.  Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? , 1999, The European journal of neuroscience.

[13]  Z. Fu,et al.  Rabies virus quasispecies: implications for pathogenesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[15]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[16]  N. Drasdo,et al.  Parvocellular neurons limit motion acuity in human peripheral vision , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  G. Ugolini Specificity of rabies virus as a transneuronal tracer of motor networks: Transfer from hypoglossal motoneurons to connected second‐order and higher order central nervous system cell groups , 1995, The Journal of comparative neurology.

[18]  T D Albright,et al.  What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  J. Movshon,et al.  Chromatic properties of neurons in macaque MT , 1994, Visual Neuroscience.

[20]  JH Maunsell,et al.  Does primate motion perception depend on the magnocellular pathway? , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[23]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[24]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[25]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[26]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[27]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[28]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[29]  L. Benevento,et al.  An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: A double label retrograde tracer study , 1988, Experimental Brain Research.

[30]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[31]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[34]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[35]  T. Powell,et al.  The basal dendrites of Meynert cells in the striate cortex of the monkey , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[37]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[38]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[39]  J. Malpeli,et al.  The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta , 1975, The Journal of comparative neurology.

[40]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[41]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[42]  V. Casagrande,et al.  The Afferent , Intrinsic , and Efferent Connections of Primary Visual Cortex in Primates , 2005 .

[43]  W. Fries,et al.  Large layer VI cells in macaque striate cortex (Meynert cells) project to both superior colliculus and prestriate visual area V5 , 2004, Experimental Brain Research.

[44]  H. Kennedy,et al.  Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey , 2004, Experimental Brain Research.

[45]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[46]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[47]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.