Four Encounters with System Identification

Model-based engineering becomes more and more important in industrial practice. System identification is a vital technology for producing the necessary models, and has been an active area of research and applications in the automatic control community during half a century. At the same time, increasing demands require the area to constantly develop and sharpen its tools. This paper deals with how system identification does that by amalgamating concepts, features and methods from other fields. It describes encounters with four areas in systems theory and engineering: Networked Systems, Particle Filtering Techniques, Sparsity and Compressed Sensing, and Machine Learning. The impacts on System Identification methodology by these encounters are described and illustrated.

[1]  Graham C. Goodwin,et al.  Sequential Bayesian Filtering via Minimum Distortion Quantization , 2010 .

[2]  Sergio Barbarossa,et al.  Decentralized Maximum-Likelihood Estimation for Sensor Networks Composed of Nonlinearly Coupled Dynamical Systems , 2006, IEEE Transactions on Signal Processing.

[3]  Michel Gevers,et al.  Iterative weighted least-squares identification and weighted LQG control design , 1995, Autom..

[4]  Paul J. Webros A menu of designs for reinforcement learning over time , 1990 .

[5]  Stephen P. Boyd,et al.  State smoothing by sum-of-norms regularization , 2010, 49th IEEE Conference on Decision and Control (CDC).

[6]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[7]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[8]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[9]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[10]  Håkan Hjalmarsson,et al.  Sparse estimation based on a validation criterion , 2011, IEEE Conference on Decision and Control and European Control Conference.

[11]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[12]  Arnaud Doucet,et al.  Particle Filtering and Smoothing: Fifteen years later , 2008 .

[13]  Alessandro Chiuso,et al.  Prediction error identification of linear systems: A nonparametric Gaussian regression approach , 2011, Autom..

[14]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[15]  Bo Wahlberg,et al.  Variance results for identification of cascade systems , 2009, Autom..

[16]  R. Douc,et al.  Optimality of the auxiliary particle filter , 2009 .

[17]  Sergio VerdÂ,et al.  Statistical Inference Under Multiterminal Data Compression , 2000 .

[18]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[19]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[20]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[23]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[24]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[25]  L. Ljung,et al.  Segmentation of Time Series from Nonlinear Dynamical Systems , 2011 .

[26]  Frank L. Lewis,et al.  Discrete-Time Nonlinear HJB Solution Using Approximate Dynamic Programming: Convergence Proof , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Haralabos C. Papadopoulos,et al.  Sequential signal encoding from noisy measurements using quantizers with dynamic bias control , 2001, IEEE Trans. Inf. Theory.

[28]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[29]  A. Doucet,et al.  Smoothing algorithms for state–space models , 2010 .

[30]  G.B. Giannakis,et al.  Distributed compression-estimation using wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Fredrik Gustafsson,et al.  Identification with stochastic sampling time jitter , 2008, Autom..

[33]  Tyrone L. Vincent,et al.  Compressive System Identification in the Linear Time-Invariant framework , 2011, IEEE Conference on Decision and Control and European Control Conference.

[34]  Fredrik Lindsten,et al.  Rao-Blackwellised particle methods for inference and identification , 2011 .

[35]  Xin Yang,et al.  Semi-supervised nonlinear dimensionality reduction , 2006, ICML.

[36]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[37]  Håkan Hjalmarsson,et al.  The Cost of Complexity in System Identification: Frequency Function Estimation of Finite Impulse Response Systems , 2010, IEEE Transactions on Automatic Control.

[38]  L. Ljung,et al.  Blind Identification of Wiener Models , 2011 .

[39]  S. Sastry,et al.  An algebraic geometric approach to the identification of a class of linear hybrid systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[40]  G. Marinoschi An identification problem , 2005 .

[41]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[42]  Giuseppe De Nicolao,et al.  A new kernel-based approach for linear system identification , 2010, Autom..

[43]  Henrik Ohlsson,et al.  Weight Determination by Manifold Regularization , 2012 .

[44]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[45]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[46]  R. Srikant,et al.  A Mathematical Framework for Designing a Low-Loss, Low-Delay Internet , 2004 .

[47]  Lachlan L. H. Andrew,et al.  Queue Dynamics With Window Flow Control , 2010, IEEE/ACM Transactions on Networking.

[48]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[49]  Johan A. K. Suykens,et al.  Additive Regularization Trade-Off: Fusion of Training and Validation Levels in Kernel Methods , 2006, Machine Learning.

[50]  Håkan Hjalmarsson,et al.  System identification of complex and structured systems , 2009, 2009 European Control Conference (ECC).

[51]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[52]  Stephen P. Boyd,et al.  Segmentation of ARX-models using sum-of-norms regularization , 2010, Autom..

[53]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case , 2006, IEEE Transactions on Signal Processing.

[54]  Fernando Paganini,et al.  Internet congestion control , 2002 .

[55]  Xavier Bombois,et al.  Least costly identification experiment for control , 2006, Autom..

[56]  L. Ljung,et al.  Identification of Piecewise Affine Systems Using Sum-of-Norms Regularization , 2011 .

[57]  Håkan Hjalmarsson,et al.  Identification of ARX systems with non-stationary inputs - asymptotic analysis with application to adaptive input design , 2009, Autom..

[58]  Alberto Bemporad,et al.  A Greedy Approach to Identification of Piecewise Affine Models , 2003, HSCC.

[59]  Wei Xing Zheng,et al.  Identification of linear dynamic systems operating in a networked environment , 2009, Autom..

[60]  Kiyotsugu Takaba,et al.  Identification of piecewise affine systems based on statistical clustering technique , 2004, Autom..

[61]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[62]  H. Akaike A new look at the statistical model identification , 1974 .

[63]  Alberto Bemporad,et al.  A bounded-error approach to piecewise affine system identification , 2005, IEEE Transactions on Automatic Control.

[64]  Håkan Hjalmarsson,et al.  Closed Loop Aspects of Fluid Flow Model Identification in Congestion Control , 2006 .

[65]  Henrik Ohlsson,et al.  Semi-Supervised Regression and System Identification , 2010 .

[66]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[67]  Henrik Ohlsson,et al.  On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..

[68]  Subhasish Subhasish,et al.  Decentralized linear estimation in correlated measurement noise , 1991 .

[69]  John N. Tsitsiklis,et al.  Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.

[70]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[71]  Steven H. Low,et al.  Modelling and stability of FAST TCP , 2005, INFOCOM 2005.

[72]  G. Goodwin,et al.  A New Paradigm for State Estimation in Nonlinear Systems via Minimum Distortion Filtering , 2011 .

[73]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[74]  Jerry M. Mendel,et al.  Reinforcement-learning control and pattern recognition systems , 1994 .

[75]  Panos J. Antsaklis,et al.  Control and Communication Challenges in Networked Real-Time Systems , 2007, Proceedings of the IEEE.

[76]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[77]  Le Yi Wang,et al.  Quantized Identification With Dependent Noise and Fisher Information Ratio of Communication Channels , 2010, IEEE Transactions on Automatic Control.

[78]  Le Yi Wang,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[79]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[80]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[81]  Rayadurgam Srikant,et al.  The Mathematics of Internet Congestion Control , 2003 .

[82]  Carl Friedrich Gauss Theoria motus corporum coelestium , 1981 .

[83]  Lachlan L. H. Andrew,et al.  An Improved Link Model for Window Flow Control and Its Application to FAST TCP , 2009, IEEE Transactions on Automatic Control.

[84]  Håkan Hjalmarsson,et al.  Input design via LMIs admitting frequency-wise model specifications in confidence regions , 2005, IEEE Transactions on Automatic Control.

[85]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .

[86]  Luigi Fortuna,et al.  Reinforcement Learning and Adaptive Dynamic Programming for Feedback Control , 2009 .

[87]  L. Ljung,et al.  Manifold-constrained regressors in system identification , 2008, 2008 47th IEEE Conference on Decision and Control.

[88]  Stephen P. Boyd,et al.  Trajectory generation using sum-of-norms regularization , 2010, 49th IEEE Conference on Decision and Control (CDC).

[89]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[90]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[91]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[92]  G. Yin,et al.  System Identification with Quantized Observations , 2010 .

[93]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[94]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[95]  Stephen P. Boyd,et al.  A scheme for robust distributed sensor fusion based on average consensus , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[96]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[97]  L. Ljung,et al.  Wiener System Identification Using the Maximum Likelihood Method , 2010 .

[98]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[99]  V. Borkar,et al.  Asymptotic agreement in distributed estimation , 1982 .