Non-rigid 3D Shape Retrieval

Non-rigid 3D shape retrieval has become a research hotpot in communities of computer graphics, computer vision, pattern recognition, etc. In this paper, we present the results of the SHREC'15 Track: Non-rigid 3D Shape Retrieval. The aim of this track is to provide a fair and effective platform to evaluate and compare the performance of current non-rigid 3D shape retrieval methods developed by different research groups around the world. The database utilized in this track consists of 1200 3D watertight triangle meshes which are equally classified into 50 categories. All models in the same category are generated from an original 3D mesh by implementing various pose transformations. The retrieval performance of a method is evaluated using 6 commonly-used measures (i.e., PR-plot, NN, FT, ST, E-measure and DCG.). Totally, there are 37 submissions and 11 groups taking part in this track. Evaluation results and comparison analyses described in this paper not only show the bright future in researches of non-rigid 3D shape retrieval but also point out several promising research directions in this topic.

[1]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[2]  A. Ben Hamza,et al.  Intrinsic spatial pyramid matching for deformable 3D shape retrieval , 2013, International Journal of Multimedia Information Retrieval.

[3]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[4]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[6]  Riza Alp Güler,et al.  Screened Poisson Hyperfields for Shape Coding , 2014, SIAM J. Imaging Sci..

[7]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[8]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[9]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[10]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[11]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[13]  Afzal Godil,et al.  Feature-Preserved 3D Canonical Form , 2013, International Journal of Computer Vision.

[14]  Ali Shokoufandeh,et al.  Retrieving articulated 3-D models using medial surfaces , 2008, Machine Vision and Applications.

[15]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[16]  Afzal Godil,et al.  CM-BOF: visual similarity-based 3D shape retrieval using Clock Matching and Bag-of-Features , 2013, Machine Vision and Applications.

[17]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[18]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[19]  Bruno Lévy,et al.  Spectral Mesh Processing , 2009, SIGGRAPH '10.

[20]  Ryutarou Ohbuchi,et al.  Fusing Multiple Features for Shape-based 3D Model Retrieval , 2014, BMVC.

[21]  Paul Suetens,et al.  Isometric Deformation Modelling for Object Recognition , 2009, CAIP.

[22]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[23]  Stéphane Mallat,et al.  Classification with scattering operators , 2010, CVPR 2011.

[24]  Bo Li,et al.  Shape Retrieval of Non-Rigid 3D Human Models , 2014, 3DOR@Eurographics.

[25]  Leonidas J. Guibas,et al.  Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[26]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[27]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[28]  Chunyuan Li Spectral Geometric Methods for Deformable 3D Shape Retrieval , 2013 .

[29]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[30]  Andrea Giachetti,et al.  Radial Symmetry Detection and Shape Characterization with the Multiscale Area Projection Transform , 2012, Comput. Graph. Forum.

[31]  Ryutarou Ohbuchi,et al.  Non-rigid 3D Model Retrieval Using Set of Local Statistical Features , 2012, 2012 IEEE International Conference on Multimedia and Expo Workshops.

[32]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[35]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[36]  A. Ben Hamza,et al.  Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey , 2013, Multimedia Systems.

[37]  Ralph R. Martin,et al.  Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval , 2015, Pattern Recognit..

[38]  Paul Suetens,et al.  SHREC'10 Track: Non-rigid 3D Shape Retrieval , 2010, 3DOR@Eurographics.

[39]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..