On the Hardness of the Decoding and the Minimum Distance Problems for Rank Codes

We give a randomized reduction for the Rank Syndrome Decoding problem and Rank Minimum Distance problem for rank codes over extension fields. Our results are based on embedding linear codes in the Hamming space into linear codes over an extension field equipped with the rank metric. We prove that if any of the previous problems for the rank metric is in ZPP = RP∩coRP, then we would have NP = ZPP. We also give complexity results for the respective rank metric approximation problems.

[1]  O. Ore On a special class of polynomials , 1933 .

[2]  Venkatesan Guruswami,et al.  List decoding subspace codes from insertions and deletions , 2012, ITCS '12.

[3]  Ernst M. Gabidulin,et al.  Ideals over a Non-Commutative Ring and thier Applications in Cryptology , 1991, EUROCRYPT.

[4]  Daniele Micciancio,et al.  Inapproximability of the Shortest Vector Problem: Toward a Deterministic Reduction , 2012, Theory Comput..

[5]  Qi Cheng,et al.  A Deterministic Reduction for the Gap Minimum Distance Problem , 2012, IEEE Transactions on Information Theory.

[6]  Chris Peikert,et al.  On Ideal Lattices and Learning with Errors over Rings , 2010, JACM.

[7]  Gilles Zémor,et al.  Full Cryptanalysis of the Chen Identification Protocol , 2011, PQCrypto.

[8]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[9]  Thierry P. Berger,et al.  Reducing Key Length of the McEliece Cryptosystem , 2009, AFRICACRYPT.

[10]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[11]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[12]  Philippe Gaborit,et al.  On the Complexity of the Rank Syndrome Decoding Problem , 2013, IEEE Transactions on Information Theory.

[13]  Nicolas Courtois,et al.  Efficient Zero-Knowledge Authentication Based on a Linear Algebra Problem MinRank , 2001, ASIACRYPT.

[14]  Paulo S. L. M. Barreto,et al.  MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[16]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[17]  Yuan Zhou Introduction to Coding Theory , 2010 .

[18]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[19]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[20]  T. Ho,et al.  On Linear Network Coding , 2010 .

[21]  Alexander Vardy,et al.  Algebraic List-Decoding of Subspace Codes , 2013, IEEE Transactions on Information Theory.

[22]  H. Keng,et al.  A THEOREM ON MATRICES OVER A SFIELD AND ITS APPLICATIONS , 1951 .

[23]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[24]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[25]  Jacques Stern,et al.  The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations , 1997, J. Comput. Syst. Sci..

[26]  Gilles Zémor,et al.  Low Rank Parity Check codes and their application to cryptography , 2013 .

[27]  Madhu Sudan,et al.  Hardness of approximating the minimum distance of a linear code , 1999, IEEE Trans. Inf. Theory.

[28]  Antoine Joux,et al.  Decoding Random Binary Linear Codes in 2n/20: How 1+1=0 Improves Information Set Decoding , 2012, IACR Cryptol. ePrint Arch..

[29]  RegevOded,et al.  On Ideal Lattices and Learning with Errors over Rings , 2013 .

[30]  Ernst M. Gabidulin,et al.  Error and erasure correcting algorithms for rank codes , 2008, Des. Codes Cryptogr..

[31]  Lu Minggao,et al.  The difference between consecutive primes , 1985 .

[32]  Antoine Joux,et al.  A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic , 2013, IACR Cryptol. ePrint Arch..

[33]  Antoine Joux,et al.  A Heuristic Quasi-Polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic , 2014, EUROCRYPT.

[34]  Alexander Vardy,et al.  Algorithmic complexity in coding theory and the minimum distance problem , 1997, STOC '97.

[35]  Venkatesan Guruswami,et al.  List decoding reed-solomon, algebraic-geometric, and gabidulin subcodes up to the singleton bound , 2013, STOC '13.

[36]  Gilles Zémor,et al.  RankSign: An Efficient Signature Algorithm Based on the Rank Metric , 2014, PQCrypto.

[37]  Pierre Loidreau,et al.  Properties of codes in rank metric , 2006, ArXiv.