Sparse Modeling of Textures

This paper presents a generative model for textures that uses a local sparse description of the image content. This model enforces the sparsity of the expansion of local texture patches on adapted atomic elements. The analysis of a given texture within this framework performs the sparse coding of all the patches of the texture into the dictionary of atoms. Conversely, the synthesis of a new texture is performed by solving an optimization problem that seeks for a texture whose patches are sparse in the dictionary. This paper explores several strategies to choose this dictionary. A set of hand crafted dictionaries composed of edges, oscillations, lines or crossings elements allows to synthesize synthetic images with geometric features. Another option is to define the dictionary as the set of all the patches of an input exemplar. This leads to computer graphics methods for synthesis and shares some similarities with non-local means filtering. The last method we explore learns the dictionary by an optimization process that maximizes the sparsity of a set of exemplar patches. Applications of all these methods to texture synthesis, inpainting and classification shows the efficiency of the proposed texture model.

[1]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[2]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[3]  Laurent D. Cohen A new approach of vector quantization for image data compression and texture detection , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[4]  Ken Perlin,et al.  An image synthesizer , 1988 .

[5]  Alan C. Bovik,et al.  Analysis of multichannel narrow-band filters for image texture segmentation , 1991, IEEE Trans. Signal Process..

[6]  S. Lu,et al.  Texture segmentation by clustering of Gabor feature vectors , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[7]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[8]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[9]  Mihran Tuceryan,et al.  Moment-based texture segmentation , 1994, Pattern Recognit. Lett..

[10]  Mihran Tucceryan,et al.  Moment-based texture segmentation , 1994 .

[11]  James R. Bergen,et al.  Pyramid-based texture analysis/synthesis , 1995, Proceedings., International Conference on Image Processing.

[12]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[13]  Jeremy S. De Bonet,et al.  Multiresolution sampling procedure for analysis and synthesis of texture images , 1997, SIGGRAPH.

[14]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[15]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[16]  S. Mallat A wavelet tour of signal processing , 1998 .

[17]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[18]  Roberto Manduchi,et al.  Independent component analysis of textures , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[20]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[21]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[22]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[23]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[24]  David A. Clausi,et al.  Designing Gabor filters for optimal texture separability , 2000, Pattern Recognit..

[25]  Song-Chun Zhu,et al.  Exploring Texture Ensembles by Efficient Markov Chain Monte Carlo-Toward a 'Trichromacy' Theory of Texture , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[27]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[28]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[29]  Dani Lischinski,et al.  Texture Mixing and Texture Movie Synthesis Using Statistical Learning , 2001, IEEE Trans. Vis. Comput. Graph..

[30]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[31]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[32]  Michael Ashikhmin,et al.  Synthesizing natural textures , 2001, I3D '01.

[33]  Bruno A. Olshausen,et al.  Learning Sparse Multiscale Image Representations , 2002, NIPS.

[34]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[35]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[36]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[37]  Vicent Caselles,et al.  Disocclusion by Joint Interpolation of Vector Fields and Gray Levels , 2003, Multiscale Model. Simul..

[38]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[39]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[40]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[41]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[42]  Song-Chun Zhu,et al.  Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998, International Journal of Computer Vision.

[43]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[44]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[45]  J. Morel,et al.  On image denoising methods , 2004 .

[46]  F. Durand,et al.  Texture design using a simplicial complex of morphable textures , 2005, ACM Trans. Graph..

[47]  Sylvain Lefebvre,et al.  Parallel controllable texture synthesis , 2005, ACM Trans. Graph..

[48]  Nipun Kwatra,et al.  Texture optimization for example-based synthesis , 2005, ACM Trans. Graph..

[49]  Tony DeRose,et al.  Wavelet noise , 2005, SIGGRAPH 2005.

[50]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[51]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[53]  Yen-Wei Chen,et al.  Selection of ICA Features for Texture Classification , 2005, ISNN.

[54]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[55]  Sylvain Lefebvre,et al.  Appearance-space texture synthesis , 2006, ACM Trans. Graph..

[56]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[57]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[58]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[59]  Karl Skretting,et al.  Texture Classification Using Sparse Frame-Based Representations , 2006, EURASIP J. Adv. Signal Process..

[60]  Gabriel Peyré,et al.  Non-negative Sparse Modeling of Textures , 2007, SSVM.

[61]  Daniel Cremers,et al.  Iterated Nonlocal Means for Texture Restoration , 2007, SSVM.

[62]  Michael Elad,et al.  Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary , 2008, SIAM J. Imaging Sci..

[63]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[64]  Stphane Mallat,et al.  A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .

[65]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[66]  Kun Zhou,et al.  Inverse texture synthesis , 2008, ACM Trans. Graph..

[67]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[68]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[69]  Gabriel Peyré,et al.  Manifold models for signals and images , 2009, Comput. Vis. Image Underst..