Utilizing in-situ resources and 3D printing structures for a manned Mars mission

Abstract This paper presents a manned Mars mission, which is based on the use of in-situ resources for the fabrication of structures. First, it provides an overview of the two-phase mission. In phase one, robotic construction units prepare a functional base for phase-two human habitation. Then, it describes a set of prospective structures that can be created utilizing additive manufacturing (commonly known as 3D printing) techniques and in situ materials. Next, the technological advancements required to allow this type of mission are considered and their feasibility is discussed. Specific focus is given to the topics of basalt 3D printing and the maintenance of the pressure environment. The process of the construction of the base is also discussed. Finally the proposed approach is analyzed through comparison to prior missions, before concluding.

[1]  Gaurav S. Sukhatme,et al.  Collective construction with multiple robots , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  A. Vasavada,et al.  Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover , 2014, Science.

[3]  Greg S. Mungas,et al.  Pneumatic Excavator and Regolith Transport System for Lunar ISRU and Construction , 2008 .

[4]  Richard A. Schultz,et al.  Brittle strength of basaltic rock masses with applications to Venus , 1993 .

[5]  Sheila A. Thibeault,et al.  Development and Testing of in situ Materials for Human Exploration of Mars , 2000 .

[6]  Robert M. Bagdigian,et al.  ISS Water Reclamation System Design , 1999 .

[7]  R. Anderson,et al.  Mars Science Laboratory Mission and Science Investigation , 2012 .

[8]  Gary H. Kitmacher,et al.  Reference Guide to the International Space Station , 2010 .

[9]  Jing Liu,et al.  Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink , 2014, Science China Technological Sciences.

[10]  Timothy N. Titus Mars: Water, water everywhere , 2004, Nature.

[11]  Jonathan McDowell Near-Earth Space , 2000 .

[12]  Harry Y. McSween,et al.  Elemental Composition of the Martian Crust , 2009, Science.

[13]  A. Fisher Permeability within basaltic oceanic crust , 1998 .

[14]  S. Hoffman,et al.  Human exploration of Mars, Design Reference Architecture 5.0 , 2010, 2010 IEEE Aerospace Conference.

[15]  Stephen J. Hoffman,et al.  Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team , 1997 .

[16]  Robert M. Zubrin,et al.  The case for Mars : the plan to settle the red planet and why we must , 1996 .

[17]  G. Dreibus,et al.  Mars, a Volatile-Rich Planet , 1985 .

[18]  Michael Hannon,et al.  Humans to Mars: a feasibility and cost-benefit analysis. , 2005, Acta astronautica.

[19]  Paul S. Schenker,et al.  Robotics Challenges for Robotic and Human Mars Exploration , 2000 .

[20]  Lecon Woo,et al.  - Failure Morphology of Injection Molded High Density Polyethylene, HDPE, Component with Living Hinge , 1998 .

[21]  R. Kelso Expanding the Planetary Analog Test Sites in Hawaii - Planetary Basalt Manipulation , 2013 .

[22]  Brand Griffin,et al.  A Comparison of Transportation Systems for Human Missions to Mars , 2004 .

[23]  Barry Berman,et al.  3D printing: the new industrial revolution , 2012, IEEE Engineering Management Review.

[24]  Galia V. Tzvetkova LIFE ROBONAUT 2 : MISSION , TECHNOLOGIES , 2014 .

[25]  J. Longuski,et al.  Cycler orbit between Earth and Mars , 1993 .

[26]  Robert D. Braun,et al.  Extension of Traditional Entry, Descent, and Landing Technologies for Human Mars Exploration , 2008 .

[27]  M. Saar,et al.  Permeability‐porosity relationship in vesicular basalts , 1999 .

[28]  J. C. Mankins,et al.  Space solar power programs and microwave wireless power transmission technology , 2002 .

[29]  H. Kodama Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer , 1981 .

[30]  Silvia Benvenuti,et al.  Living on the Moon: Topological Optimization of a 3D-Printed Lunar Shelter , 2013 .

[31]  Scott M. McLennan,et al.  Acid-sulfate weathering of synthetic Martian basalt: The acid fog model revisited , 2004 .

[32]  Ertu Unver,et al.  3D Printing- Media Hype or Manufacturing Reality: Textiles Surface Fashion Product Architecture. , 2014 .

[33]  John S. Lewis,et al.  Mining the sky : untold riches from the asteroids, comets, and planets , 1996 .

[34]  M. S. Konstantinov,et al.  The analysis of manned Mars mission with duration of 1000 days , 2012 .

[35]  Hong Zhang,et al.  Blind bulldozing: multiple robot nest construction , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[36]  N. Christensen,et al.  Permeability of the oceanic crust based on experimental studies of basalt permeability at elevated pressures , 1988 .

[37]  David Pittman fix-a-flat: A combination of liquefied propellant and tire sealant helps STRANDED MOTORISTS , 2010 .

[38]  R. A. Kerr Growing prospects for life on Mars divide astrobiologists. , 2010, Science.

[39]  Scott E. Hudson,et al.  Printing teddy bears: a technique for 3D printing of soft interactive objects , 2014, CHI.

[40]  Valentina Colla,et al.  Building components for an outpost on the Lunar soil by means of a novel 3D printing technology , 2014 .

[41]  Christopher P. McKay,et al.  Analytical Techniques for Retrieval of Atmospheric Composition with the Quadrupole Mass Spectrometer of the Sample Analysis at Mars Instrument Suite on Mars Science Laboratory , 2014 .

[42]  J.R. Cruz,et al.  A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing , 2008, 2008 IEEE Aerospace Conference.

[43]  BowyerAdrian,et al.  3D Printing and Humanity's First Imperfect Replicator , 2014 .

[44]  Jean Marc Salotti,et al.  Simplified scenario for manned Mars missions , 2011 .

[45]  Leif E. Peterson,et al.  Space Radiation Cancer Risks and Uncertainties for Mars Missions , 2001, Radiation research.

[46]  F. J. Turner,et al.  Igneous and Metamorphic Petrology , 1960 .

[47]  Paul J. van Susante,et al.  A Review of Lunar Regolith Excavation Robotic Device Prototypes , 2011 .

[48]  G. Flynn,et al.  The physical and chemical properties and resource potential of Martian surface soils. , 1993 .

[49]  Kriss J. Kennedy,et al.  Habitats and Surface Construction Technology and Development Roadmap , 1997 .

[50]  R C Singleterry,et al.  A new Mars radiation environment model with visualization. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[51]  R. Manning,et al.  Mars Exploration Entry, Descent, and Landing Challenges , 2007 .

[52]  Robert D. Braun,et al.  High Mass Mars Entry, Descent, and Landing Architecture Assessment , 2009 .

[53]  Ashley M. Korzun,et al.  A concept for the entry, descent, and landing of high-mass payloads at Mars , 2010 .

[54]  Behrokh Khoshnevis,et al.  Automated construction by contour craftingrelated robotics and information technologies , 2004 .

[55]  Jeremy Straub Command of a multi-tier robotic network with local decision-making capabilities , 2014 .

[56]  Charles D. Edwards,et al.  Replenishing the Mars relay network , 2014, 2014 IEEE Aerospace Conference.

[57]  S. Hoffman,et al.  Human Exploration of Mars , 1997 .