Recent Advances and Emerging Trends in Photo‐Electrochemical Solar Energy Conversion

Photo‐electrochemical (PEC) solar energy conversion offers the promise of low‐cost renewable fuel generation from abundant sunlight and water. In this Review, recent developments in photo‐electrochemical water splitting are discussed with respect to this promise. State‐of‐the‐art photo‐electrochemical device performance is put in context with the current understanding of the necessary requirements for cost‐effective solar hydrogen generation (in terms of solar‐to‐hydrogen conversion efficiency and system durability, in particular). Several important studies of photo‐electrochemical hydrogen generation at p‐type photocathodes are highlighted, mostly with protection layers (for enhanced durability), but also a few recent examples where protective layers are not needed. Recent work with the widely studied n‐type BiVO4 photoanode is detailed, which highlights the needs and necessities for the next big photoanode material yet to be discovered. The emerging new research direction of photo‐electrocatalytic upgrading of biomass substrates toward value‐added chemicals is then discussed, before closing with a commentary on how research on PEC materials remains a worthwhile endeavor.

[1]  Wilson A. Smith,et al.  General Considerations for Improving Photovoltage in Metal–Insulator–Semiconductor Photoanodes , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[2]  M. Grätzel,et al.  Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting , 2015 .

[3]  M. Grätzel,et al.  Rate Law Analysis of Water Oxidation on a Hematite Surface , 2015, Journal of the American Chemical Society.

[4]  B. Parkinson,et al.  Perspectives on the photoelectrochemical storage of solar energy , 2017 .

[5]  S. Linic,et al.  Maximizing Solar Water Splitting Performance by Nanoscopic Control of the Charge Carrier Fluxes across Semiconductor–Electrocatalyst Junctions , 2018, ACS Catalysis.

[6]  B. Parkinson Advantages of Solar Hydrogen Compared to Direct Carbon Dioxide Reduction for Solar Fuel Production , 2016 .

[7]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[8]  Buxing Han,et al.  Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials , 2017 .

[9]  T. Moehl,et al.  Stabilized Solar Hydrogen Production with CuO/CdS Heterojunction Thin Film Photocathodes , 2017 .

[10]  Igor Levin,et al.  H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. , 2013, Nature materials.

[11]  J. Turner,et al.  Photoelectrolysis of HBr and HI Using a Monolithic Combined Photoelectrochemical/Photovoltaic Device , 1999 .

[12]  K. Sivula,et al.  Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. , 2013, ACS applied materials & interfaces.

[13]  Kimberly M. Papadantonakis,et al.  A taxonomy for solar fuels generators , 2015 .

[14]  Derek Abbott,et al.  Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? , 2010, Proceedings of the IEEE.

[15]  Wee‐Jun Ong,et al.  Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review , 2017 .

[16]  T. Moehl,et al.  Investigation of (Leaky) ALD TiO2 Protection Layers for Water-Splitting Photoelectrodes. , 2017, ACS applied materials & interfaces.

[17]  Roel van de Krol,et al.  Highly Improved Quantum Efficiencies for Thin Film BiVO4 Photoanodes , 2011 .

[18]  Nathan S. Lewis,et al.  A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films , 2015 .

[19]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[20]  Wilson A. Smith,et al.  Photocharged BiVO4 photoanodes for improved solar water splitting , 2016 .

[21]  P. Boddy Oxygen Evolution on Semiconducting TiO2 , 1968 .

[22]  B. Parkinson,et al.  Efficient and stable photoelectrochemical cells constructed with WSe2 and MoSe2 photoanodes , 1981 .

[23]  V. Balzani,et al.  The hydrogen issue. , 2011, ChemSusChem.

[24]  J. Switzer,et al.  An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. , 2015, Nature materials.

[25]  W. Bonner,et al.  Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst , 1982 .

[26]  Wilson A. Smith,et al.  Emerging Postsynthetic Improvements of BiVO4 Photoanodes for Solar Water Splitting , 2018 .

[27]  T. Moehl,et al.  Photocorrosion-resistant Sb2Se3 photocathodes with earth abundant MoSx hydrogen evolution catalyst , 2017 .

[28]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[29]  K. Sivula,et al.  Direct Light-Driven Water Oxidation by a Ladder-Type Conjugated Polymer Photoanode , 2015, Journal of the American Chemical Society.

[30]  S. Haussener,et al.  Integrated Photo-Electrochemical Solar Fuel Generators under Concentrated Irradiation I. 2-D Non-Isothermal Multi-Physics Modeling , 2016 .

[31]  Gunawan,et al.  Pt/In2S3/CdS/Cu2ZnSnS4 Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. , 2015, Journal of the American Chemical Society.

[32]  Matthew R. Shaner,et al.  A comparative technoeconomic analysis of renewable hydrogen production using solar energy , 2016 .

[33]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[34]  D. Friedrich,et al.  Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency. , 2017, Journal of the American Chemical Society.

[35]  M. Grätzel,et al.  Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface , 2017, Nature Communications.

[36]  Kevin Sivula,et al.  A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting , 2014 .

[37]  Kevin Sivula,et al.  Enhancing the Performance of a robust sol-gel-processed p-type delafossite CuFeO2 photocathode for solar water reduction. , 2015, ChemSusChem.

[38]  Kimberly M. Papadantonakis,et al.  Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films , 2015, Proceedings of the National Academy of Sciences.

[39]  A. Kvit,et al.  Enabling Solar Water Oxidation by BiVO4 Photoanodes in Basic Media , 2018, Chemistry of Materials.

[40]  Takehiko Kitamori,et al.  Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency , 2015, Scientific Reports.

[41]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[42]  O. Hansen,et al.  MoS2-an integrated protective and active layer on n(+)p-Si for solar H2 evolution. , 2013, Physical chemistry chemical physics : PCCP.

[43]  Todd G. Deutsch,et al.  Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures , 2017, Nature Energy.

[44]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[45]  Fuding Lin,et al.  Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. , 2014, Nature materials.

[46]  Timothy R. Cook,et al.  Solar energy supply and storage for the legacy and nonlegacy worlds. , 2010, Chemical reviews.

[47]  Y. Li,et al.  Improving charge collection with delafossite photocathodes: a host–guest CuAlO2/CuFeO2 approach , 2016 .

[48]  G. Mul,et al.  Beyond Water Splitting : Efficiencies of Photo-Electrochemical Devices Producing Hydrogen and Valuable Oxidation Products , 2017 .

[49]  Matthew R. Shaner,et al.  Net-zero emissions energy systems , 2018, Science.

[50]  Keywan Riahi,et al.  Zero emission targets as long-term global goals for climate protection , 2015 .

[51]  W. Jo,et al.  Adjusting the Anisotropy of 1D Sb2Se3 Nanostructures for Highly Efficient Photoelectrochemical Water Splitting , 2018 .

[52]  Jooho Moon,et al.  Molecular Chemistry-Controlled Hybrid Ink-Derived Efficient Cu2ZnSnS4 Photocathodes for Photoelectrochemical Water Splitting , 2016 .

[53]  Nathan S. Lewis,et al.  Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators , 2015 .

[54]  E. Reisner,et al.  Multifunctional Coatings from Scalable Single Source Precursor Chemistry in Tandem Photoelectrochemical Water Splitting , 2015 .

[55]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[56]  Ib Chorkendorff,et al.  Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes , 2015 .

[57]  Anders Hagfeldt,et al.  Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices , 2018, Nature Catalysis.

[58]  Thomas W. Hamann,et al.  Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces , 2017, Nature Energy.

[59]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[60]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[61]  T. Jacobsson Photoelectrochemical water splitting: an idea heading towards obsolescence? , 2018 .

[62]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[63]  Matthew R. Shaner,et al.  Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes , 2016, Nature Communications.

[64]  K. Sivula,et al.  A Bottom‐Up Approach toward All‐Solution‐Processed High‐Efficiency Cu(In,Ga)S2 Photocathodes for Solar Water Splitting , 2016 .

[65]  F. Toma,et al.  Potential-Sensing Electrochemical AFM Shows CoPi as a Hole Collector and Oxygen Evolution Catalyst on BiVO4 Water-Splitting Photoanodes , 2018, ACS Energy Letters.

[66]  Yujie Sun,et al.  Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. , 2018, Chemical communications.

[67]  H. Lewerenz,et al.  Advances in photoelectrocatalysis with nanotopographical photoelectrodes. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[68]  K. Sivula,et al.  Photogenerated Charge Harvesting and Recombination in Photocathodes of Solvent-Exfoliated WSe2 , 2017 .

[69]  Li-ping Zhu,et al.  Extended Light Harvesting with Dual Cu2O‐Based Photocathodes for High Efficiency Water Splitting , 2018 .

[70]  Wen-Hui Cheng,et al.  Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency , 2017, ACS Energy Letters.

[71]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[72]  C. Sousa,et al.  On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing , 2014 .

[73]  Kyoung-Shin Choi,et al.  Combined biomass valorization and hydrogen production in a photoelectrochemical cell. , 2015, Nature chemistry.

[74]  W. Cui,et al.  Operando deconvolution of photovoltaic and electrocatalytic performance in ALD TiO2 protected water splitting photocathodes† †Electronic supplementary information (ESI) available: SEM images, Faradaic efficiencies, V2/ΔV–V1 curve, etc. See DOI: 10.1039/c8sc01453a , 2018, Chemical science.

[75]  D. Friedrich,et al.  Evaluating Charge Carrier Transport and Surface States in CuFeO2 Photocathodes , 2017 .

[76]  M. Grätzel,et al.  Ultrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias , 2014, Journal of the American Chemical Society.

[77]  John Rick,et al.  Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. , 2016, Nanoscale horizons.

[78]  Ib Chorkendorff,et al.  Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution , 2013 .

[79]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[80]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[81]  P. McIntyre,et al.  Titanium Oxide Crystallization and Interface Defect Passivation for High Performance Insulator-Protected Schottky Junction MIS Photoanodes. , 2016, ACS applied materials & interfaces.

[82]  Frances A. Houle,et al.  Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting , 2014 .

[83]  Ib Chorkendorff,et al.  Strategies for stable water splitting via protected photoelectrodes. , 2017, Chemical Society reviews.

[84]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[85]  Seonhee Lee,et al.  Self-oriented Sb2Se3 nanoneedle photocathodes for water splitting obtained by a simple spin-coating method , 2017 .

[86]  Joel W. Ager,et al.  Net primary energy balance of a solar-driven photoelectrochemical water-splitting device , 2013 .

[87]  Brian D. James,et al.  Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production , 2009 .

[88]  N. Gaillard,et al.  Wide Band Gap CuGa(S,Se)2 Thin Films on Transparent Conductive Fluorinated Tin Oxide Substrates as Photocathode Candidates for Tandem Water Splitting Devices , 2018, The Journal of Physical Chemistry C.

[89]  K. Sayama Production of High-Value-Added Chemicals on Oxide Semiconductor Photoanodes under Visible Light for Solar Chemical-Conversion Processes , 2018 .

[90]  Frances A. Houle,et al.  Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology , 2016 .

[91]  Jooho Moon,et al.  Enhanced Photocurrent of Transparent CuFeO2 Photocathodes by Self-Light-Harvesting Architecture. , 2017, ACS applied materials & interfaces.

[92]  A. Hellman,et al.  The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction , 2015 .

[93]  G. Gary Wang,et al.  Progress in Developing Metal Oxide Nanomaterials for Photoelectrochemical Water Splitting , 2017 .

[94]  N. Lewis,et al.  Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO_2/Ni Coatings , 2014 .

[95]  Yujie Sun,et al.  Innovative Strategies for Electrocatalytic Water Splitting. , 2018, Accounts of chemical research.

[96]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[97]  Katherine L. Orchard,et al.  Pathways to electrochemical solar-hydrogen technologies , 2018 .

[98]  M. Antognazza,et al.  All Solution-Processed, Hybrid Organic–Inorganic Photocathode for Hydrogen Evolution , 2017, ACS omega.

[99]  K. Sivula,et al.  Defect Mitigation of Solution-Processed 2D WSe2 Nanoflakes for Solar-to-Hydrogen Conversion. , 2018, Nano letters.

[100]  K. Zhu,et al.  Low-Cost, Efficient, and Durable H2 Production by Photoelectrochemical Water Splitting with CuGa3Se5 Photocathodes. , 2018, ACS applied materials & interfaces.

[101]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[102]  Wilson A. Smith,et al.  Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation , 2017, Nature Communications.

[103]  G. Bilger,et al.  Hydrogen evolution on platinum-coated p-silicon photocathodes , 1996 .

[104]  I. Sharp,et al.  Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. , 2016, Nature materials.

[105]  Xudong Wang,et al.  Metastable Intermediates in Amorphous Titanium Oxide: A Hidden Role Leading to Ultra-Stable Photoanode Protection. , 2018, Nano letters.

[106]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[107]  Lydia Helena Wong,et al.  Targeting Ideal Dual‐Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1‐xSe2 Photocathodes , 2015 .

[108]  Peter Bogdanoff,et al.  Comprehensive Evaluation of CuBi2O4 as a Photocathode Material for Photoelectrochemical Water Splitting , 2016 .

[109]  Michael Grätzel,et al.  Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. , 2016, Nano letters.

[110]  Jianlin Shi,et al.  Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER) , 2018 .

[111]  H. Over Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. , 2012, Chemical reviews.

[112]  Wilson A. Smith,et al.  Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes , 2017 .

[113]  Xuan Liu,et al.  Efficient H2 Evolution Coupled with Oxidative Refining of Alcohols via A Hierarchically Porous Nickel Bifunctional Electrocatalyst , 2017 .

[114]  S. Tilley,et al.  Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O , 2015 .

[115]  C. Berlinguette,et al.  Photoelectrochemical oxidation of organic substrates in organic media , 2017, Nature Communications.