A Method for Estimating Angular Separation in Mobile Wireless Sensor Networks

Resource-constrained mobile sensors require periodic position measurements for navigation around the sensing region. Such information is often obtained using GPS or onboard sensors such as optical encoders. However, GPS is not reliable in all environments, and odometry accrues error over time. Although several localization techniques exist for wireless sensor networks, they are typically time consuming, resource intensive, and/or require expensive hardware, all of which are undesirable for lightweight mobile devices. In this paper, we describe a technique for determining spatial relationships that is suitable for resource-constrained mobile sensors. Angular separation between multiple pairs of stationary sensor nodes is derived using wheel encoder data in conjunction with the measured Doppler shift of an RF interference signal. Our experimental results demonstrate that using this technique, a robot is able to determine the angular separation between four pairs of sensors in a 45 × 35 m sensing region with an average error of 0.28 rad. in 0.68 s.

[1]  Pei Zhang,et al.  SensorFly: Controlled-mobile sensing platform for indoor emergency response applications , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[2]  Ákos Lédeczi,et al.  Radio interferometric tracking of mobile wireless nodes , 2007, MobiSys '07.

[3]  Xenofon D. Koutsoukos,et al.  A Survey on Localization for Mobile Wireless Sensor Networks , 2009, MELT.

[4]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[5]  Kostas E. Bekris,et al.  Robotics-Based Location Sensing Using Wireless Ethernet , 2005, Wirel. Networks.

[6]  Bill Goodwine,et al.  MICAbot: a robotic platform for large-scale distributed robotics , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Philip Levis,et al.  The nesC language: a holistic approach to networked embedded systems , 2003, SIGP.

[8]  David E. Culler,et al.  Design of a wireless sensor network platform for detecting rare, random, and ephemeral events , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[9]  Pradeep K. Khosla,et al.  Millibot trains for enhanced mobility , 2002 .

[10]  A. Bugra Koku,et al.  Evaluation of egocentric navigation methods , 2005, ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005..

[11]  Antonis A. Argyros,et al.  Angle-based methods for mobile robot navigation: reaching the entire plane , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[12]  Xenofon D. Koutsoukos,et al.  RF doppler shift-based mobile sensor tracking and navigation , 2010, TOSN.

[13]  Thomas F. La Porta,et al.  Sensor relocation in mobile sensor networks , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[14]  B. R. Badrinath,et al.  Ad hoc positioning system (APS) using AOA , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[15]  Mani B. Srivastava,et al.  RAGOBOT: A New Platform for Wireless Mobile Sensor Networks , 2005, DCOSS.

[16]  Theodore S. Rappaport,et al.  A beacon navigation method for autonomous vehicles , 1989 .

[17]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[18]  J. Friedman,et al.  Angle-of-arrival assisted Radio Interferometry (ARI) target localization , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[19]  Xenofon D. Koutsoukos,et al.  Radio Interferometric Angle of Arrival Estimation , 2010, EWSN.

[20]  Kung Yao,et al.  Source localization and beamforming , 2002, IEEE Signal Process. Mag..

[21]  Carlos Couto,et al.  Generalized geometric triangulation algorithm for mobile robot absolute self-localization , 2003, 2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692).

[22]  David E. Culler,et al.  System architecture directions for networked sensors , 2000, SIGP.

[23]  Xenofon D. Koutsoukos,et al.  On the Feasibility of Determining Angular Separation in Mobile Wireless Sensor Networks , 2009, MELT.

[24]  Xenofon D. Koutsoukos,et al.  Tracking mobile nodes using RF Doppler shifts , 2007, SenSys '07.

[25]  Xenofon D. Koutsoukos,et al.  Mobile sensor localization and navigation using RF doppler shifts , 2008, MELT '08.

[26]  Xenofon D. Koutsoukos,et al.  Mobile Sensor Navigation Using Rapid RF-Based Angle of Arrival Localization , 2011, 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium.

[27]  Ahmet Bugra Koku,et al.  A novel approach for robot homing , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[28]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[29]  Waylon Brunette,et al.  Data MULEs: modeling a three-tier architecture for sparse sensor networks , 2003, Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003..

[30]  Vijay Kumar,et al.  Biologically inspired bearing-only navigation and tracking , 2007, 2007 46th IEEE Conference on Decision and Control.

[31]  David E. Culler,et al.  Mica: A Wireless Platform for Deeply Embedded Networks , 2002, IEEE Micro.

[32]  Edward M. Riseman,et al.  Image-based homing , 1992 .

[33]  Miklós Maróti,et al.  Radio interferometric geolocation , 2005, SenSys '05.

[34]  Gaurav S. Sukhatme,et al.  Robomote: enabling mobility in sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..