Thermodynamics and evolutionary biology through optimal control

We consider a particular instance of the lift of controlled systems recently proposed in the theory of irreversible thermodynamics and show that it leads to a variational principle for an optimal control in the sense of Pontryagin. Then we focus on two important applications: in thermodynamics and in evolutionary biology. In the thermodynamic context, we show that this principle provides a dynamical implementation of the Second Law, which stabilizes the equilibrium manifold of a system. In the evolutionary context, we discuss several interesting features: it provides a robust scheme for the coevolution of the population and its fitness landscape; it has a clear informational interpretation; it recovers Price equation naturally; and finally, it extends standard evolutionary dynamics to include phenomena such as the emergence of cooperation and the coexistence of qualitatively different phases of evolution, which we speculate can be associated with Darwinism and punctuated equilibria.

[1]  Bernhard Maschke,et al.  Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold , 2017, IEEE Transactions on Automatic Control.

[2]  M. Nowak,et al.  The fastest evolutionary trajectory. , 2007, Journal of theoretical biology.

[3]  Fernando Paganini,et al.  IEEE Transactions on Automatic Control , 2006 .

[4]  J. Billingsley Mathematics for Control , 2005 .

[5]  M. de León,et al.  Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems , 2016, 1612.06224.

[6]  Ieee Transactions On Automatic Control, Vol. Ac-2'7, No. 3, June 1982 , .

[7]  A. Bravetti,et al.  Liouville’s theorem and the canonical measure for nonconservative systems from contact geometry , 2014, 1412.0026.

[8]  Cesar S. Lopez-Monsalvo,et al.  Contact Symmetries and Hamiltonian Thermodynamics , 2014, 1409.7340.

[9]  Ronald Aylmer Sir Fisher,et al.  The genetical theory of natural selection: a complete variorum edition. , 1999 .

[10]  A. Bravetti,et al.  Contact Hamiltonian Mechanics , 2016, 1604.08266.

[11]  A. Schaft,et al.  Stabilization of Control Contact Systems , 2015 .

[12]  Denis Dochain,et al.  An entropy-based formulation of irreversible processes based on contact structures , 2010 .

[13]  Alessandro Bravetti,et al.  Contact Hamiltonian Dynamics: The Concept and Its Use , 2017, Entropy.

[14]  P. Ao Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics. , 2008, Communications in theoretical physics.

[15]  G. Karev,et al.  On mathematical theory of selection: continuous time population dynamics , 2008, Journal of mathematical biology.

[16]  M. Nowak Five Rules for the Evolution of Cooperation , 2006, Science.

[17]  Claus O. Wilke,et al.  Dynamic fitness landscapes in molecular evolution , 1999, physics/9912012.

[18]  M. Nowak,et al.  Unifying evolutionary dynamics. , 2002, Journal of theoretical biology.

[19]  Kaizhi Wang,et al.  Aubry–Mather Theory for Contact Hamiltonian Systems , 2018, Communications in Mathematical Physics.

[20]  A. Bravetti Contact geometry and thermodynamics , 2019, International Journal of Geometric Methods in Modern Physics.

[21]  B. Maschke About the lift of irreversible thermodynamic systems to the Thermodynamic Phase Space , 2016 .

[22]  Peter Salamon,et al.  Contact structure in thermodynamic theory , 1991 .

[23]  S. Frank Natural selection maximizes Fisher information , 2009, Journal of evolutionary biology.

[24]  Miroslav Grmela,et al.  Contact Geometry of Mesoscopic Thermodynamics and Dynamics , 2014, Entropy.

[25]  Matteo Smerlak,et al.  Limiting fitness distributions in evolutionary dynamics. , 2015, Journal of theoretical biology.

[26]  Bernhard Maschke,et al.  Feedback equivalence of input-output contact systems , 2013, Syst. Control. Lett..

[27]  M. Smerlak Natural Selection as Coarsening , 2017, 1707.05317.

[28]  Hansjörg Geiges,et al.  An introduction to contact topology , 2008 .

[29]  Jeremy L. England,et al.  Statistical physics of self-replication. , 2012, The Journal of chemical physics.

[30]  Shin-itiro Goto,et al.  Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics , 2014, 1412.5780.

[31]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[32]  Tomoki Ohsawa Contact geometry of the Pontryagin maximum principle , 2015, Autom..

[33]  W. Marsden I and J , 2012 .

[34]  W. Hamilton,et al.  The Evolution of Cooperation , 1984 .

[35]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[36]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[37]  Herschel Rabitz,et al.  Mutagenic evidence for the optimal control of evolutionary dynamics. , 2008, Physical review letters.

[38]  Witold Respondek,et al.  A contact covariant approach to optimal control with applications to sub-Riemannian geometry , 2015, Math. Control. Signals Syst..

[39]  R. Hanel,et al.  Evolutionary dynamics from a variational principle. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Gian Paolo Beretta,et al.  Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  M. Guay,et al.  Control design for thermodynamic systems on contact manifolds , 2017 .

[42]  B. Frieden,et al.  Physics from Fisher Information: A Unification , 1998 .

[43]  Raj Chakrabarti,et al.  Dynamics and control of DNA sequence amplification. , 2014, The Journal of chemical physics.

[44]  Hans P. Geering,et al.  Optimal control with engineering applications , 2007 .

[45]  Denis Dochain,et al.  Some Properties of Conservative Port Contact Systems , 2009, IEEE Transactions on Automatic Control.

[46]  D. Braaten Physics of life , 1993, Nature.

[47]  A. Bravetti,et al.  Thermostat algorithm for generating target ensembles. , 2015, Physical review. E.

[48]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[49]  B. Drossel Biological evolution and statistical physics , 2001, cond-mat/0101409.

[50]  Robert Marsland,et al.  Statistical Physics of Adaptation , 2014, 1412.1875.

[51]  S. Frank Natural selection. V. How to read the fundamental equations of evolutionary change in terms of information theory , 2012, Journal of evolutionary biology.

[52]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[53]  Valerio Capraro,et al.  A Model of Human Cooperation in Social Dilemmas , 2013, PloS one.

[54]  V. Pande,et al.  On the application of statistical physics to evolutionary biology. , 2009, Journal of theoretical biology.

[55]  Shin-itiro Goto,et al.  Contact geometric descriptions of vector fields on dually flat spaces and their applications in electric circuit models and nonequilibrium statistical mechanics , 2015, 1512.00950.

[56]  Kaizhi Wang,et al.  Implicit variational principle for contact Hamiltonian systems , 2017 .

[57]  John C. Baez,et al.  Relative Entropy in Biological Systems , 2015, Entropy.

[58]  M Nilsson,et al.  Error thresholds for quasispecies on dynamic fitness landscapes. , 1999, Physical review letters.

[59]  Bernhard Maschke,et al.  An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes , 2007 .

[60]  Alessandro Bravetti,et al.  An optimal strategy to solve the Prisoner’s Dilemma , 2018, Scientific Reports.

[61]  P. Ao,et al.  Laws in Darwinian Evolutionary Theory , 2005, ArXiv.

[62]  Valerio Capraro,et al.  Group size effect on cooperation in one-shot social dilemmas , 2014, Scientific Reports.

[63]  G. Karev Replicator Equations and the Principle of Minimal Production of Information , 2009, Bulletin of mathematical biology.