Shared Kernel Information Embedding for Discriminative Inference

Latent variable models, such as the GPLVM and related methods, help mitigate overfitting when learning from small or moderately sized training sets. Nevertheless, existing methods suffer from several problems: 1) complexity, 2) the lack of explicit mappings to and from the latent space, 3) an inability to cope with multimodality, and 4) the lack of a well-defined density over the latent space. We propose an LVM called the Kernel Information Embedding (KIE) that defines a coherent joint density over the input and a learned latent space. Learning is quadratic, and it works well on small data sets. We also introduce a generalization, the shared KIE (sKIE), that allows us to model multiple input spaces (e.g., image features and poses) using a single, shared latent representation. KIE and sKIE permit missing data during inference and partially labeled data during learning. We show that with data sets too large to learn a coherent global model, one can use the sKIE to learn local online models. We use sKIE for human pose inference.

[1]  Miguel Á. Carreira-Perpiñán,et al.  Parametric dimensionality reduction by unsupervised regression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Trevor Darrell,et al.  Factorized Orthogonal Latent Spaces , 2010, AISTATS.

[3]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion , 2010, International Journal of Computer Vision.

[4]  Cristian Sminchisescu,et al.  Twin Gaussian Processes for Structured Prediction , 2010, International Journal of Computer Vision.

[5]  Bohyung Han,et al.  Sequential Kernel Density Approximation and Its Application to Real-Time Visual Tracking , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Cristian Sminchisescu,et al.  Fast algorithms for large scale conditional 3D prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Trevor Darrell,et al.  Sparse probabilistic regression for activity-independent human pose inference , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Roland Memisevic,et al.  Non-linear Latent Factor Models for Revealing Structure in High-dimensional Data , 2008 .

[9]  Andrew W. Fitzgibbon,et al.  The Joint Manifold Model for Semi-supervised Multi-valued Regression , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  Cristian Sminchisescu,et al.  Spectral Latent Variable Models for Perceptual Inference , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  Michael J. Black,et al.  Combined discriminative and generative articulated pose and non-rigid shape estimation , 2007, NIPS.

[12]  Miguel Á. Carreira-Perpiñán,et al.  People Tracking with the Laplacian Eigenmaps Latent Variable Model , 2007, NIPS.

[13]  Hans-Peter Seidel,et al.  Nonparametric Density Estimation with Adaptive, Anisotropic Kernels for Human Motion Tracking , 2007, Workshop on Human Motion.

[14]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Human Pose Estimation , 2007, MLMI.

[15]  Cristian Sminchisescu,et al.  Semi-supervised Hierarchical Models for 3D Human Pose Reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Miguel Á. Carreira-Perpiñán,et al.  The Laplacian Eigenmaps Latent Variable Model , 2007, AISTATS.

[17]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[18]  Luc Van Gool,et al.  Monocular Tracking with a Mixture of View-Dependent Learned Models , 2006, AMDO.

[19]  Roland Memisevic,et al.  Kernel information embeddings , 2006, ICML.

[20]  David W. Murray,et al.  Regression-based Hand Pose Estimation from Multiple Cameras , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Björn Stenger,et al.  Multivariate Relevance Vector Machines for Tracking , 2006, ECCV.

[22]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion , 2006 .

[23]  Rajesh P. N. Rao,et al.  Learning Shared Latent Structure for Image Synthesis and Robotic Imitation , 2005, NIPS.

[24]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[25]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[26]  Helge J. Ritter,et al.  Principal surfaces from unsupervised kernel regression , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Cristian Sminchisescu,et al.  Discriminative density propagation for 3D human motion estimation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Ramani Duraiswami,et al.  The improved fast Gauss transform with applications to machine learning , 2005 .

[29]  Ankur Agarwal,et al.  Learning to track 3D human motion from silhouettes , 2004, ICML.

[30]  Ankur Agarwal,et al.  3D human pose from silhouettes by relevance vector regression , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[31]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[32]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[33]  Trevor Darrell,et al.  Fast pose estimation with parameter-sensitive hashing , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[34]  Malte Kuss,et al.  The Geometry Of Kernel Canonical Correlation Analysis , 2003 .

[35]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[37]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[38]  Miguel Á. Carreira-Perpiñán,et al.  Reconstruction of Sequential Data with Probabilistic Models and Continuity Constraints , 1999, NIPS.

[39]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[40]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[41]  D. W. Scott Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[42]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[43]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .