Proximitäts- und Aktivitätserkennung mit mobilen Endgeräten

Mit der immer groseren Verbreitung mobiler Endgerate wie Smartphones und Tablets aber auch am Korper getragener Technik (Wearables), ist die Vision einer ubiquitar von Computern durchzogenen Welt weitgehend Realitat geworden. Auf Basis dieser uberall verfugbaren Technologien lassen sich mehr und mehr kontextbezogene Anwendungen umsetzen, also solche, die ihre Diensterbringung an die aktuelle Situation des Benutzers anpassen. Ein wesentliches Kontextelement ist dabei die Proximitat (Nahe) eines Benutzers zu anderen Benutzern oder Objekten. Dabei ist diese Proximitat nicht nur rein ortlich zu verstehen, sondern ihre Bedeutung kann auf samtliche Kontextelemente ausgedehnt werden. Insbesondere ist auch die Ubereinstimmung von Aktivitaten verschiedener Benutzer von Interesse, um deren Zusammengehorigkeit abzuleiten. Es existiert gerade im Hinblick auf ortliche Nahe eine Reihe von Standardtechnologien, die eine Proximitatserkennung grundsatzlich erlauben. Alle diese Verfahren weisen jedoch deutliche Schwachen im Hinblick auf Sicherheit und Privatsphare der Nutzer auf. Im Rahmen dieser Arbeit werden drei neue Verfahren zur Proximitatserkennung vorgestellt. Dabei spielen die Komponenten "Ort" und "Aktivitat" jeweils in unterschiedlichem Mase ein wichtige Rolle. Das erste Verfahren benutzt WLAN-Signale aus der Umgebung, um sichere, d.h. unfalschbare, Location Tags zu generieren, mit denen ein privatsphare-schonender Proximitatstest durchgefuhrt werden kann. Wahrend das erste Verfahren rein auf ortliche Nahe abzielt, berucksichtigt das zweite Verfahren implizit auch die Aktivitat der betrachteten Benutzer. Der Ansatz basiert auf der Auswertung und dem Vergleich visueller Daten, die von am Korper getragenen Kameras aufgenommen werden konnen. Die Grundidee des dritten Verfahrens besteht darin, dass auch rein auf Basis von Aktivitaten bzw. Aktivitatssequenzen eine kontextuelle Proximitat zwischen verschiedenen Nutzern festgestellt werden kann. Zur Umsetzung dieser Idee ist eine sehr feingranulare Aktivitatserkennung notwendig, deren Machbarkeit in dieser Arbeit ebenfalls gezeigt wird. Zusammengenommen werden in der vorliegenden Arbeit mehrere Wege aufgezeigt, unterschiedliche Arten von kontextueller Proximitat auf sichere und privatsphare-schutzende Weise festzustellen.

[1]  Yehuda Lindell,et al.  Efficient Protocols for Set Intersection and Pattern Matching with Security Against Malicious and Covert Adversaries , 2008, Journal of Cryptology.

[2]  Gregory D. Abowd,et al.  Towards a Better Understanding of Context and Context-Awareness , 1999, HUC.

[3]  Claudia Linnhoff-Popien,et al.  SURFtogether: Towards Context Proximity Detection Using Visual Features , 2014, ICCASA.

[4]  Dimitris Papadias,et al.  Combining Differential Privacy and PIR for Efficient Strong Location Privacy , 2015, SSTD.

[5]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[6]  Marco Maier,et al.  Fine-Grained Activity Recognition of Pedestrians Travelling by Subway , 2013, MobiCASE.

[7]  D. Elliott Bell,et al.  Secure Computer System: Unified Exposition and Multics Interpretation , 1976 .

[8]  Sungwon Kang,et al.  Smart scanning for mobile devices in WLANs , 2012, 2012 IEEE International Conference on Communications (ICC).

[9]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[10]  Panos Kalnis,et al.  MobiHide: A Mobilea Peer-to-Peer System for Anonymous Location-Based Queries , 2007, SSTD.

[11]  Panos Kalnis,et al.  Private queries in location based services: anonymizers are not necessary , 2008, SIGMOD Conference.

[12]  Andy Hopper,et al.  Implementing a Sentient Computing System , 2001, Computer.

[13]  Franco Zambonelli,et al.  Pervasive social context: Taxonomy and survey , 2013, TIST.

[14]  M. Worboys,et al.  A formal approach to imperfection in geographic information , 2001 .

[15]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[16]  C. Linnhoff-Popien,et al.  Vis-a-Vis : Offline-Capable Management of Virtual Trust Structures Based on Real-Life Interactions , 2014 .

[17]  William Gasarch A Survey on Private Information Retrieval , 2004 .

[18]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[19]  Yih-Chun Hu,et al.  Packet leashes: a defense against wormhole attacks in wireless networks , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[20]  Frank Stajano,et al.  Location Privacy in Pervasive Computing , 2003, IEEE Pervasive Comput..

[21]  Alec Wolman,et al.  Enabling new mobile applications with location proofs , 2009, HotMobile '09.

[22]  Kenji Mase,et al.  Activity and Location Recognition Using Wearable Sensors , 2002, IEEE Pervasive Comput..

[23]  Jian Ma,et al.  Accelerometer Based Transportation Mode Recognition on Mobile Phones , 2010, 2010 Asia-Pacific Conference on Wearable Computing Systems.

[24]  Marco Maier,et al.  ProbeTags: Privacy-preserving proximity detection using Wi-Fi management frames , 2015, 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).

[25]  Robert T. Collins,et al.  Automatically detecting the small group structure of a crowd , 2009, 2009 Workshop on Applications of Computer Vision (WACV).

[26]  Adam J. Aviv,et al.  Practicality of accelerometer side channels on smartphones , 2012, ACSAC '12.

[27]  Wei-Ying Ma,et al.  Understanding mobility based on GPS data , 2008, UbiComp.

[28]  Levente Buttyán,et al.  On the Effectiveness of Changing Pseudonyms to Provide Location Privacy in VANETs , 2007, ESAS.

[29]  Marc Langheinrich,et al.  The platform for privacy preferences 1.0 (p3p1.0) specification , 2002 .

[30]  Bill N. Schilit,et al.  Context-aware computing applications , 1994, Workshop on Mobile Computing Systems and Applications.

[31]  Stefan Poslad,et al.  Fine-Grained Transportation Mode Recognition Using Mobile Phones and Foot Force Sensors , 2012, MobiQuitous.

[32]  Radu Sion,et al.  On the Practicality of Private Information Retrieval , 2007, NDSS.

[33]  Axel Küpper,et al.  Efficient Proximity Detection for Location Based Services , 2005 .

[34]  Myron Flickner,et al.  Detection and tracking of shopping groups in stores , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Sheikh Iqbal Ahamed,et al.  Preventing multi-query attack in location-based services , 2010, WiSec '10.

[36]  David A. Wagner,et al.  Secure verification of location claims , 2003, WiSe '03.

[37]  Lorrie Faith Cranor,et al.  An Investigation into Facebook Friend Grouping , 2011, INTERACT.

[38]  J. Gillon,et al.  Group dynamics , 1996 .

[39]  Ling Liu,et al.  Protecting Location Privacy with Personalized k-Anonymity: Architecture and Algorithms , 2008, IEEE Transactions on Mobile Computing.

[40]  Gabi Nakibly,et al.  Gyrophone: Recognizing Speech from Gyroscope Signals , 2014, USENIX Security Symposium.

[41]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[42]  Tetsuji Satoh,et al.  An anonymous communication technique using dummies for location-based services , 2005, ICPS '05. Proceedings. International Conference on Pervasive Services, 2005..

[43]  Urs Hengartner,et al.  VeriPlace: a privacy-aware location proof architecture , 2010, GIS '10.

[44]  Jeff Magee,et al.  Security Considerations for a Distributed Location Service , 1998, Journal of Network and Systems Management.

[45]  Michael Beigl,et al.  Group affiliation detection using model divergence for wearable devices , 2014, SEMWEB.

[46]  Benny Pinkas,et al.  Efficient Private Matching and Set Intersection , 2004, EUROCRYPT.

[47]  Yao Zheng,et al.  SHARP: Private Proximity Test and Secure Handshake with Cheat-Proof Location Tags , 2012, ESORICS.

[48]  Andy Hopper,et al.  The active badge location system , 1992, TOIS.

[49]  Walid G. Aref,et al.  Casper*: Query processing for location services without compromising privacy , 2006, TODS.

[50]  Yue Liu,et al.  Bluetooth positioning using RSSI and triangulation methods , 2013, 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC).

[51]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[52]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[53]  Philip S. Yu,et al.  Transportation mode detection using mobile phones and GIS information , 2011, GIS.

[54]  Juan Carlos Augusto,et al.  Handbook of Ambient Intelligence and Smart Environments , 2009 .

[55]  Maxim Raya,et al.  Mix-Zones for Location Privacy in Vehicular Networks , 2007 .

[56]  Terrill L. Frantz,et al.  Communication Networks from the Enron Email Corpus “It's Always About the People. Enron is no Different” , 2005, Comput. Math. Organ. Theory.

[57]  Xiaomin Liu,et al.  Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT and Secure Computation of Set Intersection , 2009, TCC.

[58]  Paul J. M. Havinga,et al.  Movement-Based Group Awareness with Wireless Sensor Networks , 2007, Pervasive.

[59]  Tobias Höllerer,et al.  Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking , 2011, International Journal of Computer Vision.

[60]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[61]  Philipp Marcus,et al.  Estimating crowd densities and pedestrian flows using wi-fi and bluetooth , 2014, MobiQuitous.

[62]  Mikkel Baun Kjærgaard,et al.  Detecting pedestrian flocks by fusion of multi-modal sensors in mobile phones , 2012, UbiComp.

[63]  Koji Yatani,et al.  BodyScope: a wearable acoustic sensor for activity recognition , 2012, UbiComp.

[64]  Jussi Myllymaki,et al.  Buddy tracking - efficient proximity detection among mobile friends , 2007, Pervasive Mob. Comput..

[65]  Bill N. Schilit,et al.  Place Lab: Device Positioning Using Radio Beacons in the Wild , 2005, Pervasive.

[66]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[67]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[68]  Michael Beigl,et al.  Towards Collaborative Group Activity Recognition Using Mobile Devices , 2013, Mob. Networks Appl..

[69]  Paolo Pirjanian,et al.  The vSLAM Algorithm for Robust Localization and Mapping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[70]  Michael Beigl,et al.  Group activity recognition using belief propagation for wearable devices , 2014, SEMWEB.

[71]  Gaetano Borriello,et al.  SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength , 2000 .

[72]  Carlos Delgado Kloos,et al.  Using bluetooth to implement a pervasive indoor positioning system with minimal requirements at the application level , 2012, Mob. Inf. Syst..

[73]  Andreas Gutscher Coordinate transformation - a solution for the privacy problem of location based services? , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[74]  Panos Kalnis,et al.  PRIVE: anonymous location-based queries in distributed mobile systems , 2007, WWW '07.

[75]  Per Enge,et al.  Robust Location Tag Generation from Noisy Location Data for Security Applications , 2009 .

[76]  M. Werner AMBIENCE : A Context-Centric Online Social Network , 2015 .

[77]  Axel Küpper,et al.  Efficient proximity and separation detection among mobile targets for supporting location-based community services , 2006, MOCO.

[78]  Aniket Kittur,et al.  Bridging the gap between physical location and online social networks , 2010, UbiComp.

[79]  Tim O'Reilly,et al.  What is Web 2.0: Design Patterns and Business Models for the Next Generation of Software , 2007 .

[80]  M. Weiser,et al.  Hot topics-ubiquitous computing , 1993 .

[81]  John Krumm,et al.  Inference Attacks on Location Tracks , 2007, Pervasive.

[82]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[83]  Carmit Hazay,et al.  Efficient Set Operations in the Presence of Malicious Adversaries , 2010, Journal of Cryptology.

[84]  Deborah Estrin,et al.  Determining transportation mode on mobile phones , 2008, 2008 12th IEEE International Symposium on Wearable Computers.

[85]  Jacques Traoré,et al.  A fair and efficient solution to the socialist millionaires' problem , 2001, Discret. Appl. Math..

[86]  Michael Koch,et al.  Ubiquitous Computing , 2001, CSCW-Kompendium.

[87]  George Varghese,et al.  MobiClique: middleware for mobile social networking , 2009, WOSN '09.

[88]  Reza Shokri,et al.  On the Optimal Placement of Mix Zones , 2009, Privacy Enhancing Technologies.

[89]  Dirk Helbing,et al.  Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods , 2011, Networks Heterog. Media.

[90]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[91]  P. Lukowicz,et al.  Collaborative Crowd Density Estimation with Mobile Phones , 2011 .

[92]  Chi-Yin Chow,et al.  Spatial cloaking for anonymous location-based services in mobile peer-to-peer environments , 2011, GeoInformatica.

[93]  Dan Boneh,et al.  Location Privacy via Private Proximity Testing , 2011, NDSS.

[94]  Francesco Bonchi,et al.  Never Walk Alone: Uncertainty for Anonymity in Moving Objects Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[95]  Ronald Poppe,et al.  A survey on vision-based human action recognition , 2010, Image Vis. Comput..

[96]  Helger Lipmaa,et al.  Verifiable Homomorphic Oblivious Transfer and Private Equality Test , 2003, ASIACRYPT.

[97]  Sushil Jajodia,et al.  ProvidentHider: An Algorithm to Preserve Historical k-Anonymity in LBS , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[98]  Jian Lu,et al.  Mining Emerging Patterns for recognizing activities of multiple users in pervasive computing , 2009, 2009 6th Annual International Mobile and Ubiquitous Systems: Networking & Services, MobiQuitous.

[99]  Mirco Musolesi,et al.  Sensing meets mobile social networks: the design, implementation and evaluation of the CenceMe application , 2008, SenSys '08.

[100]  Janus Dam Nielsen,et al.  Location privacy via actively secure private proximity testing , 2012, 2012 IEEE International Conference on Pervasive Computing and Communications Workshops.

[101]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  Nicholas Hopper,et al.  Efficient Private Proximity Testing with GSM Location Sketches , 2012, Financial Cryptography.

[103]  Anas Al-Nuaimi,et al.  Mobile Visual Location Recognition , 2013 .

[104]  Raúl Montoliu,et al.  Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems , 2015, Expert Syst. Appl..

[105]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[106]  Alex Pentland,et al.  Characterizing Social Interactions using the Sociometer , 2004 .

[107]  C.E. Palazzi Buddy-finder: a proposal for a novel entertainment application for GSM , 2004, IEEE Global Telecommunications Conference Workshops, 2004. GlobeCom Workshops 2004..

[108]  Ragib Hasan,et al.  'Who, When, and Where?' Location Proof Assertion for Mobile Devices , 2014, DBSec.

[109]  Yan Huang,et al.  Cloaking locations for anonymous location based services: a hybrid approach , 2009, GeoInformatica.

[110]  Lars Kulik,et al.  A Formal Model of Obfuscation and Negotiation for Location Privacy , 2005, Pervasive.

[111]  Einar Snekkenes,et al.  Concepts for personal location privacy policies , 2001, EC '01.

[112]  Miguel A. Labrador,et al.  A Survey on Human Activity Recognition using Wearable Sensors , 2013, IEEE Communications Surveys & Tutorials.

[113]  Ling Liu,et al.  Supporting anonymous location queries in mobile environments with privacygrid , 2008, WWW.

[114]  Marco Gruteser,et al.  USENIX Association , 1992 .

[115]  Axel Küpper,et al.  Anonymization in Proactive Location Based Community Services , 2005 .

[116]  Silvio Micali,et al.  A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks , 1988, SIAM J. Comput..

[117]  Claudia Linnhoff-Popien,et al.  Vis-a-Vis Verification: Social Network Identity Management Through Real World Interactions , 2013 .

[118]  Rebecca Montanari,et al.  Context-Aware Middleware for Anytime, Anywhere Social Networks , 2007, IEEE Intelligent Systems.

[119]  Michael Gertz,et al.  Mining email social networks , 2006, MSR '06.

[120]  Wim Lamotte,et al.  WiFiPi: Involuntary tracking of visitors at mass events , 2013, 2013 IEEE 14th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM).

[121]  Y.-K. Lee,et al.  Human Activity Recognition via an Accelerometer-Enabled-Smartphone Using Kernel Discriminant Analysis , 2010, 2010 5th International Conference on Future Information Technology.

[122]  Peter Winkler,et al.  Comparing information without leaking it , 1996, CACM.

[123]  Sushil Jajodia,et al.  Privacy-Aware Proximity Based Services , 2009, 2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware.

[124]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[125]  David Jenkins,et al.  A Fragmented Future , 2010 .

[126]  Mark Weiser,et al.  Some computer science issues in ubiquitous computing , 1993, CACM.

[127]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[128]  Liviu Iftode,et al.  Privately querying location-based services with SybilQuery , 2009, UbiComp.

[129]  Ling Liu,et al.  MobiMix: Protecting location privacy with mix-zones over road networks , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[130]  Daniel Gatica-Perez,et al.  GroupUs: Smartphone Proximity Data and Human Interaction Type Mining , 2011, 2011 15th Annual International Symposium on Wearable Computers.

[131]  Wade Trappe,et al.  ProxiMate: proximity-based secure pairing using ambient wireless signals , 2011, MobiSys '11.

[132]  Chadly Marouane,et al.  Indoor positioning using smartphone camera , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[133]  Alessandro Epasto,et al.  Signals from the crowd: uncovering social relationships through smartphone probes , 2013, Internet Measurement Conference.

[134]  Tim Berners-Lee,et al.  WorldWideWeb : proposal for a HyperText Project , 1990 .

[135]  Lin Sun,et al.  Activity Recognition on an Accelerometer Embedded Mobile Phone with Varying Positions and Orientations , 2010, UIC.

[136]  Seungmin Rho,et al.  Physical activity recognition using multiple sensors embedded in a wearable device , 2013, TECS.

[137]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[138]  T. Chartrand,et al.  The chameleon effect: the perception-behavior link and social interaction. , 1999, Journal of personality and social psychology.

[139]  Loren G. Terveen,et al.  People-to-People-to-Geographical-Places: The P3 Framework for Location-Based Community Systems , 2004, Computer Supported Cooperative Work (CSCW).

[140]  Oliver Brdiczka,et al.  Automatic detection of interaction groups , 2005, ICMI '05.

[141]  Ashwin Machanavajjhala,et al.  l-Diversity: Privacy Beyond k-Anonymity , 2006, ICDE.

[142]  Josep Domingo-Ferrer,et al.  Micro-aggregation-based heuristics for p-sensitive k-anonymity: one step beyond , 2008, PAIS '08.

[143]  D. Helbing,et al.  The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics , 2010, PloS one.

[144]  Hojung Cha,et al.  Sensing WiFi packets in the air: practicality and implications in urban mobility monitoring , 2014, UbiComp.

[145]  Michael L. Littman,et al.  Activity Recognition from Accelerometer Data , 2005, AAAI.

[146]  Bernt Schiele,et al.  Analyzing features for activity recognition , 2005, sOc-EUSAI '05.

[147]  Mi Zhang,et al.  A feature selection-based framework for human activity recognition using wearable multimodal sensors , 2011, BODYNETS.

[148]  Ling Liu,et al.  Location Privacy in Mobile Systems: A Personalized Anonymization Model , 2005, 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05).

[149]  John Krumm Realistic Driving Trips For Location Privacy , 2009, Pervasive.

[150]  Ilkka Korhonen,et al.  Detection of Daily Activities and Sports With Wearable Sensors in Controlled and Uncontrolled Conditions , 2008, IEEE Transactions on Information Technology in Biomedicine.

[151]  Frank Dürr,et al.  A classification of location privacy attacks and approaches , 2012, Personal and Ubiquitous Computing.

[152]  Gerd Kortuem,et al.  Wearable Communities: Augmenting Social Networks with Wearable Computers , 2003, IEEE Pervasive Comput..