Directional interpolation approach to H ∞ -Optimization and robust stabilization

It is shown that, under a mild condition, H\infty -optimization and robust stabilization are equivalent to a directional interpolation problem which is a matrix extension of the classical Pick-Nevanlinna interpolation problem. A classical iterative method, which is an extension of the Schur-Nevanlinna algorithm, is given for solving the problem. This method does not require the inner-outer factorization nor the balanced realization of the original plant. A circuit theoretical parameterization of all solutions is derived that is expected to enhance the physical insight to the H\infty -optimal control and robust stabilization. This parameterization has the degree much less than the one obtained previously.

[1]  H. Kimura Robust stabilizability for a class of transfer functions , 1983, The 22nd IEEE Conference on Decision and Control.

[2]  G. Zames,et al.  On H ∞ -optimal sensitivity theory for SISO feedback systems , 1984 .

[3]  Mathukumalli Vidyasagar,et al.  Robust controllers for uncertain linear multivariable systems , 1984, Autom..

[4]  Brian D. O. Anderson,et al.  An interpolation theory approach to H∞ controller degree bounds , 1988 .

[5]  D. C. Youla,et al.  Interpolation with positive real functions , 1967 .

[6]  J. Helton,et al.  Beurling-Lax Representations Using Classical Lie Groups with Many Applications III: Groups Preserving Two Bilinear Forms , 1986 .

[7]  Peter Dorato,et al.  A modification of the classical Nevanlinna-Pick interpolation algorithm with applications to robust stabilization , 1986 .

[8]  G. Zames,et al.  H ∞ -optimal feedback controllers for linear multivariable systems , 1984 .

[9]  B. Francis,et al.  Sensitivity tradeoffs for multivariable plants , 1985 .

[10]  Allen Tannenbaum Modified Nevanlinna-Pick interpolation and feedback stabilization of linear plants with uncertainty in the gain factor , 1982 .

[11]  Michael G. Safonov,et al.  L ∞ optimization and Hankel approximation , 1985 .

[12]  D. Youla A New Theory of Cascade Synthesis , 1961 .

[13]  J. Pearson,et al.  Optimal disturbance reduction in linear multivariable systems , 1983, The 22nd IEEE Conference on Decision and Control.

[14]  J. Ball,et al.  Optimal Hankel Norm model reductions and Weiner-Hopf factorization I: the canonical case , 1987 .

[15]  D. Sarason Generalized interpolation in , 1967 .

[16]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[17]  K. Glover Robust stabilization of linear multivariable systems: relations to approximation , 1986 .

[18]  Michael G. Safonov,et al.  Multivariable L∞ sensitivity optimization and hankel approximation , 1983, 1983 American Control Conference.

[19]  P. Dewilde,et al.  Lossless chain scattering matrices and optimum linear prediction: The vector case , 1981 .

[20]  Y. Kamp,et al.  The Nevanlinna–Pick Problem for Matrix-Valued Functions , 1979 .

[21]  Georg Pick,et al.  Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden , 1915 .