Simple and Robust Experiment Design for System Identification Using Fractional Models

This paper tackles the problems of simple and robust experiment design for system identification using elementary fractional models. It is based on a frequency domain approach and allows to determine the best sine input signal maximizing D-optimality criterion of the parameters inverse covariance matrix in different contexts? First, a single parameter (any of the parameters of the elementary fractional model) is assumed to be unknown. Next, any combination of two and then three parameters are supposed to be unknown. Finally, the problem of robust experiment design is treated when a bounded interval of the estimated parameters is known, in the same contexts.

[1]  T. Poinot,et al.  Identification of Fractional Systems Using an Output-Error Technique , 2004 .

[2]  Sirish L. Shah,et al.  Continuous-time model identification of fractional-order models with time delays , 2011 .

[3]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[4]  G.C. Goodwin,et al.  Evaluation and comparison of robust optimal experiment design criteria , 2006, 2006 American Control Conference.

[5]  James C Spall,et al.  Factorial Design for Efficient Experimentation , 2010, IEEE Control Systems.

[6]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[7]  Hugues Garnier,et al.  Parameter and differentiation order estimation in fractional models , 2013, Autom..

[8]  Xavier Bombois,et al.  Identification and the Information Matrix: How to Get Just Sufficiently Rich? , 2009, IEEE Transactions on Automatic Control.

[9]  Xavier Bombois,et al.  Least costly identification experiment for control , 2006, Autom..

[10]  Thierry Poinot,et al.  A method for modelling and simulation of fractional systems , 2003, Signal Process..

[11]  O. Lunden,et al.  A factorial designed experiment for evaluation of mode-stirrers in reverberation chambers , 2003, 2003 IEEE International Symposium on Electromagnetic Compatibility, 2003. EMC '03..

[12]  M. Rapaić,et al.  Variable-Order Fractional Operators for Adaptive Order and Parameter Estimation , 2014, IEEE Transactions on Automatic Control.

[13]  Xavier Bombois,et al.  Optimal experiment design for open and closed-loop system identification , 2011, Commun. Inf. Syst..

[14]  I. Podlubny Fractional differential equations , 1998 .

[15]  Alain Oustaloup,et al.  Advances in System Identification Using Fractional Models , 2008 .

[16]  Alain Oustaloup,et al.  Synthesis of fractional Laguerre basis for system approximation , 2007, Autom..

[17]  Thierry Poinot,et al.  Fractional modelling and identification of thermal systems , 2011, Signal Process..

[18]  Alain Oustaloup,et al.  Non Integer Model from Modal Decomposition for Time Domain System Identification , 2000 .

[19]  K. Chaloner,et al.  Optimum experimental designs for properties of a compartmental model. , 1993, Biometrics.

[20]  H. Chernoff Approaches in Sequential Design of Experiments , 1973 .

[21]  A. Oustaloup,et al.  Modeling and identification of a non integer order system , 1999, 1999 European Control Conference (ECC).

[22]  Håkan Hjalmarsson,et al.  Closed loop experiment design for linear time invariant dynamical systems via LMIs , 2008, Autom..

[23]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[24]  Werner G. Müller,et al.  batch sequential design for a nonlinear estimation problem , 1989 .

[25]  Alain Oustaloup,et al.  Analytical computation of the H2-norm of fractional commensurate transfer functions , 2011, Autom..

[26]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[27]  Xavier Moreau,et al.  Robust estimation of fractional models in the frequency domain using set membership methods , 2012, Signal Process..

[28]  Xavier Moreau,et al.  Stability and resonance conditions of elementary fractional transfer functions , 2011, Autom..

[29]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[30]  Rachid Malti,et al.  A note on ℒpℒp-norms of fractional systems , 2013, Autom..

[31]  A. Oustaloup,et al.  Fractional state variable filter for system identification by fractional model , 2001, 2001 European Control Conference (ECC).

[32]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[33]  Xavier Moreau,et al.  Experiment design in system identification using fractional models , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[34]  Holger Dette,et al.  Standardized Maximin E-optimal Designs for the Michaelis Menten Model , 2002 .

[35]  Rohit S. Patwardhan,et al.  A moving horizon approach to input design for closed loop identification , 2014 .

[36]  Thierry Poinot,et al.  Estimation of thermal parameters using fractional modelling , 2011, Signal Process..

[37]  Luc Pronzato,et al.  Optimal experimental design and some related control problems , 2008, Autom..

[38]  T. Raïssi,et al.  Set membership parameter estimation of fractional models based on bounded frequency domain data , 2010 .