Roadmap-Based Path Planning - Using the Voronoi Diagram for a Clearance-Based Shortest Path

Path planning still remains one of the core problems in modern robotic applications, such as the design of autonomous vehicles and perceptive systems. The basic path-planning problem is concerned with finding a good-quality path from a source point to a destination point that does not result in collision with any obstacles. In this article, we chose the roadmap approach and utilized the Voronoi diagram to obtain a path that is a close approximation of the shortest path satisfying the required clearance value set by the user. The advantage of the proposed technique versus alternative path-planning methods is in its simplicity, versatility, and efficiency.

[1]  Jorge Cortés,et al.  Asymptotic Optimality of Multicenter Voronoi Configurations for Random Field Estimation , 2009, IEEE Transactions on Automatic Control.

[2]  Pierre Bessière,et al.  The Ariadne's Clew Algorithm , 1993, J. Artif. Intell. Res..

[3]  Stefano Carpin,et al.  Robot motion planning using adaptive random walks , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[4]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[5]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal object amidst polygonal obstacles , 1988, Geometry and Robotics.

[6]  Kokichi Sugihara Approximation of Generalized Voronoi Diagrams by Ordinary Voronoi Diagrams , 1993, CVGIP Graph. Model. Image Process..

[7]  Yoram Koren,et al.  Real-time obstacle avoidance for fast mobile robots in cluttered environments , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[8]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[9]  J.M. Ibarra-Zannatha,et al.  A new roadmap approach to automatic path planning for mobile robot navigation , 1994, Proceedings of IEEE International Conference on Systems, Man and Cybernetics.

[10]  Hiroshi Noborio,et al.  A quadtree-based path-planning algorithm for a mobile robot , 1990, J. Field Robotics.

[11]  Nancy M. Amato,et al.  A randomized roadmap method for path and manipulation planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  Marina L. Gavrilova,et al.  Path planning in dynamic environment using an adaptive mesh , 2007, SCCG.

[13]  Jean-Claude Latombe,et al.  Interactive manipulation planning for animated characters , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[14]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..

[15]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[16]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[17]  Lindsay Kleeman,et al.  Robust Range Data Segmentation using Geometric Primitives for Robotic Applications , 2003, SIP.

[18]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[19]  Ieee Robotics,et al.  IEEE robotics & automation magazine , 1994 .

[20]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[21]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[22]  Lydia E. Kavraki,et al.  Probabilistic Roadmaps for Robot Path Planning , 1998 .

[23]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[24]  Suk-Kyo Hong,et al.  A roadmap construction algorithm for mobile robot path planning using skeleton maps , 2007, Adv. Robotics.

[25]  Sonia Martínez,et al.  Motion Planning and Control Problems for Underactuated Robots , 2003, Control Problems in Robotics.

[26]  Christopher M. Gold,et al.  Crust and anti-crust: a one-step boundary and skeleton extraction algorithm , 1999, SCG '99.

[27]  Olivier Devillers,et al.  Walking in a triangulation , 2001, SCG '01.

[28]  Charles W. Warren,et al.  Global path planning using artificial potential fields , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[29]  Jacky Baltes,et al.  Adaptive Path Planner for Highly Dynamic Environments , 2000, RoboCup.

[30]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[31]  C. Gold,et al.  Delete and insert operations in Voronoi/Delaunay methods and applications , 2003 .

[32]  Mark H. Overmars Recent Developments in Motion Planning , 2002, International Conference on Computational Science.

[33]  Rajeev Motwani,et al.  Path planning in expansive configuration spaces , 1997, Proceedings of International Conference on Robotics and Automation.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  Marina L. Gavrilova,et al.  CRYSTAL - A new density-based fast and efficient clustering algorithm , 2006, 2006 3rd International Symposium on Voronoi Diagrams in Science and Engineering.

[36]  Leo Hartman,et al.  Anytime dynamic path-planning with flexible probabilistic roadmaps , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[37]  Marina L. Gavrilova,et al.  Geometric algorithms for clearance based optimal path computation , 2007, GIS.

[38]  Olivier Devillers,et al.  Walking in a Triangulation , 2002, Int. J. Found. Comput. Sci..

[39]  Nancy M. Amato,et al.  Extracting optimal paths from roadmaps for motion planning , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[40]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[41]  Marina L. Gavrilova,et al.  Collision Detection Optimization in a Multi-Particle System , 2002, Int. J. Comput. Geom. Appl..

[42]  Tomaz Slivnik,et al.  Generalized local Voronoi diagram of visible region , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[43]  Jur P. van den Berg,et al.  The visibility-Voronoi complex and its applications , 2007, Comput. Geom..

[44]  David M. Mount,et al.  An output sensitive algorithm for computing visibility graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[45]  Micha Sharir,et al.  An efficient motion-planning algorithm for a convex polygonal object in two-dimensional polygonal space , 1990, Discret. Comput. Geom..

[46]  Ellips Masehian,et al.  A voronoi diagram-visibility graph-potential field compound algorithm for robot path planning , 2004, J. Field Robotics.