Extending conceptualisation modes for generalised Formal Concept Analysis
暂无分享,去创建一个
Francisco J. Valverde-Albacete | Carmen Peláez-Moreno | F. J. Valverde-Albacete | Carmen Peláez-Moreno
[1] R. Weiner. Lecture Notes in Economics and Mathematical Systems , 1985 .
[2] Ramón Fuentes-González,et al. The study of the L-fuzzy concept lattice , 1994 .
[3] Silke Pollandt. Fuzzy Begriffe: formale Begriffsanalyse von unscharfen Daten , 1997 .
[4] Jesús Medina,et al. Multi-adjoint t-concept lattices , 2010, Inf. Sci..
[5] Jonathan S. Golan,et al. Power algebras over semirings , 1999 .
[6] H. Ono,et al. Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .
[7] Brian A. Davey,et al. An Introduction to Lattices and Order , 1989 .
[8] Ivo Düntsch,et al. Approximation Operators in Qualitative Data Analysis , 2003, Theory and Applications of Relational Structures as Knowledge Instruments.
[9] H. Kunzi,et al. Lectu re Notes in Economics and Mathematical Systems , 1975 .
[10] Bernhard Ganter,et al. Formal Concept Analysis: Mathematical Foundations , 1998 .
[11] Wen-Xiu Zhang,et al. Variable threshold concept lattices , 2007, Inf. Sci..
[12] I. Singer. Abstract Convex Analysis , 1997 .
[13] Peter Becker,et al. The ToscanaJ Suite for Implementing Conceptual Information Systems , 2005, Formal Concept Analysis.
[14] Francisco J. Valverde-Albacete,et al. Galois Connections Between Semimodules and Applications in Data Mining , 2007, ICFCA.
[15] Peter Jipsen,et al. Residuated lattices: An algebraic glimpse at sub-structural logics , 2007 .
[16] J. Quadrat,et al. Duality and separation theorems in idempotent semimodules , 2002, math/0212294.
[17] J. Golan. Semirings and their applications , 1999 .
[18] Marcel Erné,et al. A Primer on Galois Connections , 1993 .
[19] Francisco J. Valverde-Albacete,et al. Further Galois Connections between Semimodules over Idempotent Semirings , 2007, CLA.
[20] Domaine de Voluceau,et al. Two Lectures on Max-plus Algebra , 1998 .
[21] 延原 肇. Bernd Heidergott, Olsder Jan Geert, and Jacob van der Woude著, Max Plus at Work-Modeling and Analysis of Synchronized Systems : A Course on Max-Plus Algebra and Its Applications, 出版社:Princeton Univ Press, ISBN:0691117632, 発行日:2005年11月, 第1版, 213p, 6,395円(参考価格) , 2006 .
[22] Peter Sussner,et al. Morphological associative memories , 1998, IEEE Trans. Neural Networks.
[23] G. A. Miller,et al. An Analysis of Perceptual Confusions Among Some English Consonants , 1955 .
[24] Michel Minoux,et al. Graphs, dioids and semirings : new models and algorithms , 2008 .
[25] Bernhard Ganter,et al. Conceptual Structures: Logical, Linguistic, and Computational Issues , 2000, Lecture Notes in Computer Science.
[26] Marcel Erné,et al. Adjunctions and Galois Connections: Origins, History and Development , 2004 .
[27] Manuel Ojeda-Aciego,et al. Formal concept analysis via multi-adjoint concept lattices , 2009, Fuzzy Sets Syst..
[28] Ivan. Singer. Some Relations Between Linear Mappings and Conjugations in Idempotent Analysis , 2001 .
[29] R. Wille. Dyadic Mathematics — Abstractions from Logical Thought , 2004 .
[30] Geert Jan Olsder,et al. Max Plus at Work: Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications , 2005 .
[31] Jonathan S. Golan,et al. Power Algebras over Semirings: With Applications in Mathematics and Computer Science , 2010 .
[32] Francisco J. Valverde-Albacete,et al. Towards a Generalisation of Formal Concept Analysis for Data Mining Purposes , 2006, ICFCA.
[33] Silke Pollandt,et al. Fuzzy-Begriffe - formale Begriffsanalyse unscharfer Daten , 1997 .
[34] Rudolf Wille,et al. The Basic Theorem of triadic concept analysis , 1995 .
[35] Rudolf Wille,et al. Lattices of Triadic Concept Graphs , 2000, ICCS.
[36] S. Yau. Mathematics and its applications , 2002 .
[37] Nehad N. Morsi,et al. Associatively tied implications , 2003, Fuzzy Sets Syst..
[38] Ivo Düntsch,et al. Modal-style operators in qualitative data analysis , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..
[39] Stanislav Krajci,et al. A Generalized Concept Lattice , 2005, Log. J. IGPL.
[40] Radim Belohlávek,et al. A note on variable threshold concept lattices: Threshold-based operators are reducible to classical concept-forming operators , 2007, Inf. Sci..