Coordination and Geometric Optimization via Distributed Dynamical Systems

This paper discusses dynamical systems for disk-covering and sphere-packing problems. We present facility location functions from geometric optimization and characterize their differentiable properties. We design and analyze a collection of distributed control laws that are related to nonsmooth gradient systems. The resulting dynamical systems promise to be of use in coordination problems for networked robots; in this setting the distributed control laws correspond to local interactions between the robots. The technical approach relies on concepts from computational geometry, nonsmooth analysis, and the dynamical system approach to algorithms.

[1]  Rafael Fierro,et al.  Mobile robotic sensors for perimeter detection and tracking. , 2007, ISA transactions.

[2]  Masafumi Yamashita,et al.  Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 1999, SIAM J. Comput..

[3]  Alfred M. Bruckstein,et al.  Ants, Crickets and Frogs in Cyclic Pursuit , 1991 .

[4]  Antonio Bicchi,et al.  Decentralized Cooperative Policy for Conflict Resolution in Multivehicle Systems , 2007, IEEE Transactions on Robotics.

[5]  Vladimir J. Lumelsky,et al.  Decentralized Motion Planning for Multiple Mobile Robots: The Cocktail Party Model , 1997, Auton. Robots.

[6]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[7]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[8]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[9]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[10]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[11]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[12]  R. Brockett,et al.  Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[13]  P. S. Krishnaprasad,et al.  Steering laws for motion camouflage , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[15]  Francesca Maria Ceragioli,et al.  Discontinuous ordinary differential equations and stabilization , 2000 .

[16]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[17]  Lisa Abel Commemorative Issue , .

[18]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[19]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[20]  Z. Drezner,et al.  The p-center location problem in an area , 1996 .

[21]  Timothy W. McLain,et al.  Cooperative forest fire surveillance using a team of small unmanned air vehicles , 2006, Int. J. Syst. Sci..

[22]  Sulema Aranda,et al.  On Optimal Sensor Placement and Motion Coordination for Target Tracking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[23]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[24]  Vikrant Sharma,et al.  Transfer Time Complexity of Conflict-free Vehicle Routing with no Communications , 2007, Int. J. Robotics Res..

[25]  F. Bullo,et al.  Motion Coordination with Distributed Information , 2007 .

[26]  Mireille E. Broucke,et al.  Formations of vehicles in cyclic pursuit , 2004, IEEE Transactions on Automatic Control.

[27]  Sonia Martínez,et al.  Monitoring Environmental Boundaries With a Robotic Sensor Network , 2006, IEEE Transactions on Control Systems Technology.

[28]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[29]  R. Murray,et al.  Agreement problems in networks with directed graphs and switching topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[30]  Howie Choset Nonsmooth Analysis, Convex Analysis, and their Applications to Motion Planning , 1999, Int. J. Comput. Geom. Appl..

[31]  George J. Pappas,et al.  Flocking Agents with Varying Interconnection Topology , 2004 .

[32]  B. Anderson,et al.  Directed graphs for the analysis of rigidity and persistence in autonomous agent systems , 2007 .

[33]  Jorge Cortés,et al.  Finite-time convergent gradient flows with applications to network consensus , 2006, Autom..

[34]  Brian D. O. Anderson,et al.  The Multi-Agent Rendezvous Problem. Part 1: The Synchronous Case , 2007, SIAM J. Control. Optim..

[35]  Jie Lin,et al.  The multi-agent rendezvous problem , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[36]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[37]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion: All-to-All Communication , 2007, IEEE Transactions on Automatic Control.

[38]  Yang Liu,et al.  Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology , 2003, IEEE Trans. Autom. Control..

[40]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[41]  J. Cortes,et al.  From geometric optimization and nonsmooth analysis to distributed coordination algorithms , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[42]  Shankar Sastry,et al.  A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators , 1986, 1986 25th IEEE Conference on Decision and Control.

[43]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[44]  Y Tian IEEE Conf. on Decision and Control, 1982, 629-636. A REMARK ON THE STRUCTURED SINGULAR VALUE , 1996 .

[45]  Sven Skyum A simple algorithm for computing the smallest enclosing circle , 1990 .

[46]  Kevin M. Passino,et al.  Stability analysis of swarms , 2003, IEEE Trans. Autom. Control..

[47]  George J. Pappas,et al.  Stable flocking of mobile agents part I: dynamic topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[48]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[49]  Godfried T. Toussaint,et al.  Computational geometry and facility location , 1990 .

[50]  George J. Pappas,et al.  Flocking in Fixed and Switching Networks , 2007, IEEE Transactions on Automatic Control.

[51]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[52]  Eric Klavins,et al.  A grammatical approach to self-organizing robotic systems , 2006, IEEE Transactions on Automatic Control.

[53]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[54]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[55]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[56]  A. Bacciotti,et al.  Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions , 1999 .

[57]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[58]  B. Paden,et al.  Lyapunov stability theory of nonsmooth systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[59]  V. G. Bolti︠a︡nskiĭ,et al.  Geometric Methods and Optimization Problems , 1998 .