Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target

[1]  Han Wang,et al.  Achieving Real-Time Path Planning in Unknown Environments Through Deep Neural Networks , 2022, IEEE Transactions on Intelligent Transportation Systems.

[2]  Barbara Hammer,et al.  Decentralized control and local information for robust and adaptive decentralized Deep Reinforcement Learning , 2021, Neural Networks.

[3]  Wei Zhang,et al.  Visual Navigation With Multiple Goals Based on Deep Reinforcement Learning , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Yi Lu,et al.  MGRL: Graph neural network based inference in a Markov network with reinforcement learning for visual navigation , 2021, Neurocomputing.

[5]  Chin-Teng Lin,et al.  Navigation of a Fuzzy-Controlled Wheeled Robot Through the Combination of Expert Knowledge and Data-Driven Multiobjective Evolutionary Learning , 2021, IEEE Transactions on Cybernetics.

[6]  Yang An,et al.  From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Ross A. Knepper,et al.  No Map, No Problem: A Local Sensing Approach for Navigation in Human-Made Spaces Using Signs , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[8]  Robert Babuska,et al.  Visual Navigation in Real-World Indoor Environments Using End-to-End Deep Reinforcement Learning , 2020, IEEE Robotics and Automation Letters.

[9]  Chen Wang,et al.  Visual Navigation with Asynchronous Proximal Policy Optimization in Artificial Agents , 2020, J. Robotics.

[10]  Paolo Valigi,et al.  Towards Generalization in Target-Driven Visual Navigation by Using Deep Reinforcement Learning , 2020, IEEE Transactions on Robotics.

[11]  Armin Biess,et al.  Curriculum Learning with Hindsight Experience Replay for Sequential Object Manipulation Tasks , 2020, Neural Networks.

[12]  Song Yong,et al.  Local Path Planning of Mobile Robot Based on Artificial Potential Field , 2020, 2020 39th Chinese Control Conference (CCC).

[13]  Fengzhen Tang,et al.  NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation , 2020, Neural Networks.

[14]  K. Michmizos,et al.  Reinforcement co-Learning of Deep and Spiking Neural Networks for Energy-Efficient Mapless Navigation with Neuromorphic Hardware , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[15]  Otmar Hilliges,et al.  Learning Functionally Decomposed Hierarchies for Continuous Control Tasks With Path Planning , 2020, IEEE Robotics and Automation Letters.

[16]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[17]  Javier Alonso-Mora,et al.  Model Predictive Contouring Control for Collision Avoidance in Unstructured Dynamic Environments , 2019, IEEE Robotics and Automation Letters.

[18]  Dariu M. Gavrila,et al.  Human motion trajectory prediction: a survey , 2019, Int. J. Robotics Res..

[19]  Yuichiro Yoshikawa,et al.  Intrinsically motivated reinforcement learning for human-robot interaction in the real-world , 2018, Neural Networks.

[20]  Silvio Savarese,et al.  Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Roland Siegwart,et al.  Cooperative Collision Avoidance for Nonholonomic Robots , 2018, IEEE Transactions on Robotics.

[22]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[23]  Robin De Keyser,et al.  A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization , 2017, Appl. Soft Comput..

[24]  Torsten Bertram,et al.  Online trajectory prediction and planning for social robot navigation , 2017, 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM).

[25]  Ming Liu,et al.  Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[26]  Silvio Savarese,et al.  Learning Social Etiquette: Human Trajectory Understanding In Crowded Scenes , 2016, ECCV.

[27]  Sergey Levine,et al.  Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Ali Farhadi,et al.  Target-driven visual navigation in indoor scenes using deep reinforcement learning , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Doina Precup,et al.  The Option-Critic Architecture , 2016, AAAI.

[30]  Dizan Vasquez,et al.  Novel planning-based algorithms for human motion prediction , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[31]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[32]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[33]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[34]  Vijay Kumar,et al.  Autonomous multi-floor indoor navigation with a computationally constrained MAV , 2011, 2011 IEEE International Conference on Robotics and Automation.

[35]  Han-Pang Huang,et al.  A mobile robot that understands pedestrian spatial behaviors , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Kai Oliver Arras,et al.  People tracking with human motion predictions from social forces , 2010, 2010 IEEE International Conference on Robotics and Automation.

[37]  Luc Van Gool,et al.  You'll never walk alone: Modeling social behavior for multi-target tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[38]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[39]  A. Barth,et al.  Where will the oncoming vehicle be the next second? , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[40]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[41]  Ashraf Elnagar,et al.  Prediction of moving objects in dynamic environments using Kalman filters , 2001, Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515).

[42]  Doina Precup,et al.  Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning , 1999, Artif. Intell..

[43]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[44]  Charles W. Warren,et al.  Fast path planning using modified A* method , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[45]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[46]  Chaymaa Lamini,et al.  Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning , 2018 .

[47]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .