From Wheels to Wings with Evolutionary Spiking Circuits

I will give an overview of the EPFL indoor flying project, whose goal is to evolve neural controllers for autonomous, adaptive, indoor micro-flyers. Indoor flight is still a challenge because it requires miniaturization, energy efficiency, and control of non-linear flight dynamics. This ongoing project consists in developing a flying, vision-based micro-robot, a bio-inspired controller composed of adaptive spiking neurons directly mapped into digital micro-controllers, and a method to evolve such a neural controller without human intervention. The talk describes the motivation and methodology used to reach our goal as well as the results of a number of preliminary experiments on vision-based wheeled and flying robots.

[1]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[2]  Titus R. Neumann,et al.  Artificial systems as models in biological cybernetics , 2001, Behavioral and Brain Sciences.

[3]  G Indiveri,et al.  Neuromorphic Vision Sensors , 2000, Science.

[4]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[5]  Heinrich H. Bülthoff,et al.  Evolution of the Sensorimotor Control in an Autonomous Agent , 1996 .

[6]  Svetha Venkatesh,et al.  Insect inspired behaviours for the autonomous control of mobile robots , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[7]  Dave Cliff,et al.  The computational hoverfly; a study in computational neuroethology , 1991 .

[8]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[9]  Dario Floreano,et al.  Evolutionary robots with on-line self-organization and behavioral fitness , 2000, Neural Networks.

[10]  Franck Ruffier,et al.  OCTAVE: a bioinspired visuo-motor control system for the guidance of micro-air-vehicles , 2003, SPIE Microtechnologies.

[11]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Jean-Christophe Zufferey,et al.  Toward indoor flying robots , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Dario Floreano,et al.  Evolution of Spiking Neural Controllers for Autonomous Vision-Based Robots , 2001, EvoRobots.

[14]  Dario Floreano,et al.  Vision-based navigation from wheels to wings , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[15]  Shih-Chii Liu,et al.  Analog VLSI: Circuits and Principles , 2002 .

[16]  P. J. Sobey Active navigation with a monocular robot , 1994, Biological Cybernetics.

[17]  Randall D. Beer,et al.  Evolving Dynamical Neural Networks for Adaptive Behavior , 1992, Adapt. Behav..

[18]  Francesco Mondada,et al.  Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot , 1994 .

[19]  Heinrich H. Bülthoff,et al.  Insect Inspired Visual Control of Translatory Flight , 2001, ECAL.

[20]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[21]  N. Franceschini,et al.  From insect vision to robot vision , 1992 .

[22]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[23]  Giacomo Indiveri,et al.  Autonomous Vehicle Guidance Using Analog VLSI Neuromorphic Sensors , 1997, ICANN.

[24]  Wulfram Gerstner,et al.  What Matters in Neuronal Locking? , 1996, Neural Computation.

[25]  Nicolas Franceschini,et al.  Bionics of visuo-motor control , 1997 .

[26]  Dario Floreano,et al.  Evolution of Adaptive Synapses: Robots with Fast Adaptive Behavior in New Environments , 2001, Evolutionary Computation.

[27]  Dario Floreano,et al.  Evolutionary bits'n'spikes , 2002 .

[28]  Inman Harvey,et al.  Explorations in Evolutionary Robotics , 1993, Adapt. Behav..

[29]  Dario Floreano,et al.  Evolving Vision-Based Flying Robots , 2002, Biologically Motivated Computer Vision.

[30]  B. Webb,et al.  Can robots make good models of biological behaviour? , 2001, Behavioral and Brain Sciences.

[31]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[32]  Ralph Etienne-Cummings,et al.  Toward biomorphic control using custom aVLSI CPG chips , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).