The Complexity of Computing the Size of an Interval

We study the complexity of counting the number of elements in intervals of feasible partial orders. Depending on the properties that partial orders may have, such counting functions have different complexities. If we consider total, polynomial-time decidable orders then we obtain exactly the #P functions. We show that the interval size functions for polynomial-time adjacency checkable orders are tightly related to the class FPSPACE(poly): Every FPSPACE(poly) function equals a polynomial-time function subtracted from such an interval size function. We study the function #DIV that counts the nontrivial divisors of natural numbers, and we show that #DIV is the interval size function of a polynomial-time decidable partial order with polynomial-time adjacency checks if and only if primality is in polynomial time.

[1]  Jin-Yi Cai,et al.  On the Power of Parity Polynomial Time , 1989, STACS.

[2]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[3]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[4]  Lane A. Hemachandra,et al.  A complexity theory for feasible closure properties , 1993 .

[5]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[6]  M. W. Shields An Introduction to Automata Theory , 1988 .

[7]  Osamu Watanabe,et al.  On Closure Properties of #P in the Context of PF ° #P , 1996, J. Comput. Syst. Sci..

[8]  Ker-I Ko On Self-Reducibility and Weak P-Selectivity , 1983, J. Comput. Syst. Sci..

[9]  M. Sipser,et al.  Monotone complexity , 1992 .

[10]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[11]  Heribert Vollmer,et al.  Complexity Classes of Optimization Functions , 1995, Inf. Comput..

[12]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[13]  Andrew V. Goldberg,et al.  Compression and Ranking , 1991, SIAM J. Comput..

[14]  Sven Kosub A Note on Unambiguous Function Classes , 1999, Inf. Process. Lett..

[15]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[16]  Lane A. Hemaspaandra,et al.  Near-Testable Sets , 1991, SIAM J. Comput..

[17]  Harald Hempel,et al.  The Operators min and max on the Polynomial Hierarchy , 1997, STACS.

[18]  Janos Simon On some central problems in computational complexity , 1975 .

[19]  José D. P. Rolim,et al.  Recent Advances Towards Proving P = BPP , 1998, Bull. EATCS.

[20]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[21]  Pierluigi Crescenzi,et al.  Introduction to the theory of complexity , 1994, Prentice Hall international series in computer science.

[22]  Gary L. Miller Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..

[23]  Stuart A. Kurtz,et al.  Gap-Definable Counting Classes , 1994, J. Comput. Syst. Sci..

[24]  Richard E. Ladner Polynomial Space Counting Problems , 1989, SIAM J. Comput..

[25]  Jacobo Torán,et al.  Turing Machines with Few Accepting Computations and Low Sets for PP , 1992, J. Comput. Syst. Sci..

[26]  Lane A. Hemaspaandra,et al.  The Complexity Theory Companion , 2002, Texts in Theoretical Computer Science An EATCS Series.