Geometric calibration of a multi-layer LiDAR system and image sensors using plane-based implicit laser parameters for textured 3-D depth reconstruction

The paper proposes the calibration of a LiDAR-camera system that consists of a multi-layer laser rangefinder device and a pair of video cameras. The method calibrates the intrinsic laser parameters and the extrinsic parameters of the integrated LiDAR-camera system. Using a linear form, the dimensionality of the calibration parameter space is reduced in the plane-based least square model. The optimal laser intrinsic parameters can be determined during the optimization of the extrinsic parameters, without being explicitly modeled. However, due to limited FOV of the cameras, the reduced model may lead to a solution that cannot be generalized to the working space. Hence, we use additional scene planes to improve the determination of intrinsic laser parameters. Overall performance is improved if calibration targets can be accurately estimated from the cameras. Results indicate a reduction of 50% in the flatness error is achievable and running time of the process is also decreased.

[1]  Derek D. Lichti,et al.  Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning , 2010, Remote. Sens..

[2]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[3]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Silvio Savarese,et al.  Extrinsic Calibration of a 3D Laser Scanner and an Omnidirectional Camera , 2010 .

[5]  Simon Lacroix,et al.  Calibration of a rotating multi-beam lidar , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Rui P. Rocha,et al.  Data Fusion Calibration for a 3D Laser Range Finder and a Camera using Inertial Data , 2009, ECMR.

[7]  Dimitrios G. Kottas,et al.  3D LIDAR–camera intrinsic and extrinsic calibration: Identifiability and analytical least-squares-based initialization , 2012, Int. J. Robotics Res..

[8]  Stanley M. Bileschi,et al.  Fully automatic calibration of LIDAR and video streams from a vehicle , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[9]  José-Joel Gonzalez-Barbosa,et al.  LIDAR Velodyne HDL-64E Calibration Using Pattern Planes , 2011 .

[10]  Robert Pless,et al.  Extrinsic calibration of a camera and laser range finder (improves camera calibration) , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[11]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[12]  Lili Huang,et al.  A novel multi-planar LIDAR and computer vision calibration procedure using 2D patterns for automated navigation , 2009, 2009 IEEE Intelligent Vehicles Symposium.

[13]  Kostas Daniilidis,et al.  Automatic alignment of a camera with a line scan LIDAR system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Derek D. Lichti,et al.  ON-SITE SELF-CALIBRATION USING PLANAR FEATURES FOR TERRESTRIAL LASER SCANNERS , 2007 .

[15]  Vincent Frémont,et al.  Extrinsic calibration between a multi-layer lidar and a camera , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[16]  Derek D. Lichti,et al.  Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications , 2011, Remote. Sens..

[17]  Takeo Kanade,et al.  Integrating LIDAR into Stereo for Fast and Improved Disparity Computation , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.