Avoiding coding tricks by hyperrobust learning

[1]  Jerome A. Feldman,et al.  Some Decidability Results on Grammatical Inference and Complexity , 1972, Inf. Control..

[2]  Karlis Podnieks Comparing various concepts of function prediction. Part 1. , 1974 .

[3]  Manuel Blum,et al.  Toward a Mathematical Theory of Inductive Inference , 1975, Inf. Control..

[4]  Eliana Minicozzi,et al.  Some Natural Properties of Strong-Identification in Inductive Inference , 1976, Theor. Comput. Sci..

[5]  Carl H. Smith,et al.  The Power of Pluralism for Automatic Program Synthesis , 1982, JACM.

[6]  John Case,et al.  Comparison of Identification Criteria for Machine Inductive Inference , 1983, Theor. Comput. Sci..

[7]  Thomas Zeugmann,et al.  On the Nonboundability of total Effective Operators , 1984, Math. Log. Q..

[8]  Thomas Zeugmann,et al.  On Barzdin's Conjecture , 1986, AII.

[9]  Carl H. Smith,et al.  Probability and Plurality for Aggregations of Learning Machines , 1987, Inf. Comput..

[10]  P. Odifreddi Classical recursion theory , 1989 .

[11]  Leonard Pitt,et al.  Probabilistic inductive inference , 1989, JACM.

[12]  Daniel N. Osherson,et al.  Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists , 1990 .

[13]  Mark A. Fulk ROBUST SEPARATIONS IN INDUCTIVE INFERENCE , 1990, COLT 1990.

[14]  John Case,et al.  Learning Recursive Functions from Approximations , 1997, J. Comput. Syst. Sci..

[15]  Carl H. Smith,et al.  On the power of learning robustly , 1998, COLT' 98.

[16]  John Case,et al.  Robust learning aided by context , 1998, COLT' 98.

[17]  Frank Stephan,et al.  Trees and learning , 2004, J. Comput. Syst. Sci..