Towards the adoption of Local Branch Predictors in Modern Out-of-Order Superscalar Processors
暂无分享,去创建一个
Saurabh Gupta | Jared Stark | Ragavendra Natarajan | Niranjan Soundararajan | Sreenivas Subramoney | Adi Yoaz | Lihu Rappoport | Rahul Pal | Franck Sala | A. Yoaz | N. Soundararajan | J. Stark | Saurabh Gupta | R. Natarajan | S. Subramoney | Rahul Pal | Lihu Rappoport | F. Sala
[1] André Seznec,et al. TAGE-SC-L Branch Predictors Again , 2016 .
[2] André Seznec,et al. Analysis of the O-GEometric history length branch predictor , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).
[3] Huiyang Zhou,et al. Adaptive Information Processing: An Effective Way to Improve Perceptron Predictors , 2005, J. Instr. Level Parallelism.
[4] Daniel A. Jiménez,et al. Dynamic branch prediction with perceptrons , 2001, Proceedings HPCA Seventh International Symposium on High-Performance Computer Architecture.
[5] André Seznec,et al. A new case for the TAGE branch predictor , 2011, 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[6] Mike Clark,et al. A new ×86 core architecture for the next generation of computing , 2016, IEEE Hot Chips Symposium.
[7] Margaret Martonosi,et al. Speculative Updates of Local and Global Branch History: A Quantitative Analysis , 2000, J. Instr. Level Parallelism.
[8] Pierre Michaud,et al. A case for (partially) TAgged GEometric history length branch prediction , 2006, J. Instr. Level Parallelism.
[9] Ronald N. Kalla,et al. IBM Power9 Processor Architecture , 2017, IEEE Micro.
[10] Daniel A. Jiménez,et al. The impact of delay on the design of branch predictors , 2000, MICRO 33.
[11] Joshua San Miguel,et al. The inner most loop iteration counter: A new dimension in branch history , 2015, 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[12] Yale N. Patt,et al. Checkpoint repair for out-of-order execution machines , 1987, ISCA '87.
[13] Daniel A. Jiménez,et al. Multiperspective Perceptron Predictor with TAGE , 2016 .
[14] Vijay Janapa Reddi,et al. Amdahl's Law in Big Data Analytics: Alive and Kicking in TPCx-BB (BigBench) , 2018, 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA).
[15] Huiyang Zhou,et al. Adaptive Information Processing: An Effective Way to Improve Perceptron Branch Predictors , 2006 .
[16] Eric Sprangle,et al. Increasing processor performance by implementing deeper pipelines , 2002, ISCA.
[17] Brad Calder,et al. SimPoint 3.0: Faster and More Flexible Program Phase Analysis , 2005, J. Instr. Level Parallelism.
[18] Yasuo Ishii. Fused Two-Level Branch Prediction with Ahead Calculation , 2007, J. Instr. Level Parallelism.
[19] James E. Smith,et al. A study of branch prediction strategies , 1981, ISCA '98.
[20] Koen De Bosschere,et al. 2FAR: A 2bcgskew Predictor Fused by an Alloyed Redundant History Skewed Perceptron Branch Predictor , 2005, J. Instr. Level Parallelism.
[21] Marcos Dias de Assunção,et al. Apache Spark , 2019, Encyclopedia of Big Data Technologies.
[22] S. McFarling. Combining Branch Predictors , 1993 .
[23] Yale N. Patt,et al. A two-level approach to making class predictions , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.