SEQUENCE SLIDER: expanding polyalanine fragments for phasing with multiple side-chain hypotheses

When phasing cannot be accomplished from a partial polyalanine starting model, extending the model with side chains in a multi-solution way may succeed. SEQUENCE SLIDER implements this approach for use in ARCIMBOLDO.

[1]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[2]  Adam Godzik,et al.  The importance of alignment accuracy for molecular replacement. , 2004, Acta crystallographica. Section D, Biological crystallography.

[3]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[4]  E J Dodson,et al.  ACORN2: new developments of the ACORN concept. , 2009, Acta crystallographica. Section D, Biological crystallography.

[5]  G. Sheldrick,et al.  An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features , 2018, Acta crystallographica. Section D, Structural biology.

[6]  R. Read,et al.  Intensity statistics in the presence of translational noncrystallographic symmetry , 2013, Acta crystallographica. Section D, Biological crystallography.

[7]  Claudia Millán,et al.  Macromolecular ab initio phasing enforcing secondary and tertiary structure , 2014, IUCrJ.

[8]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[9]  J. Hermoso,et al.  High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli. , 2011, Biochemistry.

[10]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[11]  L. Kang,et al.  Crystal structure of Clostridium thermocellum ribose-5-phosphate isomerase B reveals properties critical for fast enzyme kinetics , 2011, Applied Microbiology and Biotechnology.

[12]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[13]  V Y Lunin,et al.  Mean phase error and the map-correlation coefficient. , 1993, Acta crystallographica. Section D, Biological crystallography.

[14]  A. McCoy,et al.  Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement , 2018, Acta crystallographica. Section D, Structural biology.

[15]  Airlie J McCoy,et al.  Acknowledging Errors: Advanced Molecular Replacement with Phaser. , 2017, Methods in molecular biology.

[16]  Benedetta Carrozzini,et al.  Phasing at resolution higher than the experimental resolution. , 2005, Acta crystallographica. Section D, Biological crystallography.

[17]  V S Lamzin,et al.  ARP/wARP and molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[18]  Kathrin Meindl,et al.  Exploiting tertiary structure through local folds for crystallographic phasing , 2013, Nature Methods.

[19]  The charge-flipping algorithm in crystallography. , 2013 .

[20]  Huw T Jenkins,et al.  Fragon: rapid high-resolution structure determination from ideal protein fragments , 2018, Acta crystallographica. Section D, Structural biology.

[21]  Ronan M Keegan,et al.  AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models. , 2012, Acta crystallographica. Section D, Biological crystallography.

[22]  Isabel Usón,et al.  Structure determination of the O-methyltransferase NovP using the 'free lunch algorithm' as implemented in SHELXE. , 2007, Acta crystallographica. Section D, Biological crystallography.

[23]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[24]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[25]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[26]  C. Millán,et al.  ARCIMBOLDO on coiled coils , 2018, Acta crystallographica. Section D, Structural biology.

[27]  Randy J Read,et al.  On the application of the expected log-likelihood gain to decision making in molecular replacement , 2018, Acta crystallographica. Section D, Structural biology.

[28]  Thomas Terwilliger,et al.  SOLVE and RESOLVE: automated structure solution, density modification and model building. , 2004, Journal of synchrotron radiation.

[29]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[30]  About the hybrid Fourier syntheses: a probabilistic approach. , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[31]  J. Hermoso,et al.  Structure and Cell Wall Cleavage by Modular Lytic Transglycosylase MltC of Escherichia coli , 2014, ACS chemical biology.

[32]  Kam Y. J. Zhang,et al.  A fragmentation and reassembly method for ab initio phasing. , 2015, Acta Crystallographica Section D: Biological Crystallography.

[33]  Claudia Millán,et al.  Structure solution with ARCIMBOLDO using fragments derived from distant homology models , 2014, The FEBS journal.

[34]  R. Read,et al.  Improved estimates of coordinate error for molecular replacement , 2013, Acta crystallographica. Section D, Biological crystallography.

[35]  Randy J. Read,et al.  Improvement of molecular-replacement models with Sculptor , 2011, Acta crystallographica. Section D, Biological crystallography.

[36]  Yang Zhang,et al.  Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field , 2012, Proteins.

[37]  C. Giacovazzo,et al.  Ab initio phasing at resolution higher than experimental resolution. , 2005, Acta crystallographica. Section D, Biological crystallography.

[38]  Andrea Thorn,et al.  Extending molecular-replacement solutions with SHELXE , 2013, Acta crystallographica. Section D, Biological crystallography.

[39]  E. Pohl,et al.  The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant * , 2016, The Journal of Biological Chemistry.

[40]  G. Vriend,et al.  Prediction of protein conformational freedom from distance constraints , 1997, Proteins.

[41]  Massimo D Sammito,et al.  ALEPH: a network-oriented approach for the generation of fragment-based libraries and for structure interpretation , 2020, Acta crystallographica. Section D, Structural biology.

[42]  R. Othman,et al.  Computational identification of self‐inhibitory peptides from envelope proteins , 2012, Proteins.

[43]  Randy J. Read,et al.  Experiences with a new translation-function program , 1987 .

[44]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .

[45]  Martyn D. Winn,et al.  Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models , 2015, Acta crystallographica. Section D, Biological crystallography.

[46]  Garib N. Murshudov,et al.  Model preparation in MOLREP and examples of model improvement using X-ray data , 2007, Acta crystallographica. Section D, Biological crystallography.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Randy J Read,et al.  A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error , 2016, Acta crystallographica. Section D, Structural biology.

[49]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[50]  Ronan M Keegan,et al.  Ensembles generated from crystal structures of single distant homologues solve challenging molecular-replacement cases in AMPLE , 2018, Acta crystallographica. Section D, Structural biology.

[51]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Rotation Functions Biological Crystallography Likelihood-enhanced Fast Rotation Functions , 2003 .

[52]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[53]  P. Bradley,et al.  High-resolution structure prediction and the crystallographic phase problem , 2007, Nature.

[54]  G. Sheldrick,et al.  Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.

[55]  Isabel Usón,et al.  ALIXE: a phase-combination tool for fragment-based molecular replacement , 2020, Acta crystallographica. Section D, Structural biology.

[56]  Michael Kokkinidis,et al.  Structure determination of a small protein through a 23-dimensional molecular-replacement search. , 2003, Acta crystallographica. Section D, Biological crystallography.

[57]  Randy J Read,et al.  Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination , 2018, Acta crystallographica. Section D, Structural biology.

[58]  A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives , 2008, Acta crystallographica. Section D, Biological crystallography.

[59]  Randy J. Read,et al.  Pushing the boundaries of molecular replacement with maximum likelihood. , 2001, Acta crystallographica. Section D, Biological crystallography.

[60]  J. Foadi General concepts underlying ACORN, a computer program for the solution of protein structures , 2003 .

[61]  Norman Stein,et al.  CHAINSAW: a program for mutating pdb files used as templates in molecular replacement , 2008 .

[62]  C. Giacovazzo,et al.  Protein phasing at non-atomic resolution by combining Patterson and VLD techniques. , 2014, Acta crystallographica. Section D, Biological crystallography.

[63]  Ronan M Keegan,et al.  Molecular replacement using structure predictions from databases , 2019, Acta crystallographica. Section D, Structural biology.

[64]  W. Scott,et al.  Solving novel RNA structures using only secondary structural fragments. , 2010, Methods.

[65]  G. Sheldrick,et al.  Practical structure solution with ARCIMBOLDO , 2012, Acta crystallographica. Section D, Biological crystallography.

[66]  G. Sheldrick,et al.  Advances in direct methods for protein crystallography. , 1999, Current opinion in structural biology.

[67]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.