SEQUENCE SLIDER: expanding polyalanine fragments for phasing with multiple side-chain hypotheses
暂无分享,去创建一个
Isabel Usón | Ana Medina | Kathrin Meindl | Claudia Millán | Juan A Hermoso | Josep Triviño | Rafael Junqueira Borges | Massimo Sammito | Martin Alcorlo | Marcos Roberto de Mattos Fontes | C. Millán | J. Hermoso | M. Alcorlo | I. Usón | R. Borges | M. Fontes | M. Sammito | K. Meindl | A. Medina | Josep Triviño
[1] P. Zwart,et al. Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.
[2] Adam Godzik,et al. The importance of alignment accuracy for molecular replacement. , 2004, Acta crystallographica. Section D, Biological crystallography.
[3] Johannes Söding,et al. The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..
[4] E J Dodson,et al. ACORN2: new developments of the ACORN concept. , 2009, Acta crystallographica. Section D, Biological crystallography.
[5] G. Sheldrick,et al. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features , 2018, Acta crystallographica. Section D, Structural biology.
[6] R. Read,et al. Intensity statistics in the presence of translational noncrystallographic symmetry , 2013, Acta crystallographica. Section D, Biological crystallography.
[7] Claudia Millán,et al. Macromolecular ab initio phasing enforcing secondary and tertiary structure , 2014, IUCrJ.
[8] D. Blow,et al. The detection of sub‐units within the crystallographic asymmetric unit , 1962 .
[9] J. Hermoso,et al. High-resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli. , 2011, Biochemistry.
[10] Serge X. Cohen,et al. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.
[11] L. Kang,et al. Crystal structure of Clostridium thermocellum ribose-5-phosphate isomerase B reveals properties critical for fast enzyme kinetics , 2011, Applied Microbiology and Biotechnology.
[12] Randy J. Read,et al. Phaser crystallographic software , 2007, Journal of applied crystallography.
[13] V Y Lunin,et al. Mean phase error and the map-correlation coefficient. , 1993, Acta crystallographica. Section D, Biological crystallography.
[14] A. McCoy,et al. Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement , 2018, Acta crystallographica. Section D, Structural biology.
[15] Airlie J McCoy,et al. Acknowledging Errors: Advanced Molecular Replacement with Phaser. , 2017, Methods in molecular biology.
[16] Benedetta Carrozzini,et al. Phasing at resolution higher than the experimental resolution. , 2005, Acta crystallographica. Section D, Biological crystallography.
[17] V S Lamzin,et al. ARP/wARP and molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.
[18] Kathrin Meindl,et al. Exploiting tertiary structure through local folds for crystallographic phasing , 2013, Nature Methods.
[19] The charge-flipping algorithm in crystallography. , 2013 .
[20] Huw T Jenkins,et al. Fragon: rapid high-resolution structure determination from ideal protein fragments , 2018, Acta crystallographica. Section D, Structural biology.
[21] Ronan M Keegan,et al. AMPLE: a cluster-and-truncate approach to solve the crystal structures of small proteins using rapidly computed ab initio models. , 2012, Acta crystallographica. Section D, Biological crystallography.
[22] Isabel Usón,et al. Structure determination of the O-methyltransferase NovP using the 'free lunch algorithm' as implemented in SHELXE. , 2007, Acta crystallographica. Section D, Biological crystallography.
[23] Kevin Cowtan,et al. The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.
[24] Randy J. Read,et al. Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.
[25] Roland L. Dunbrack,et al. proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .
[26] C. Millán,et al. ARCIMBOLDO on coiled coils , 2018, Acta crystallographica. Section D, Structural biology.
[27] Randy J Read,et al. On the application of the expected log-likelihood gain to decision making in molecular replacement , 2018, Acta crystallographica. Section D, Structural biology.
[28] Thomas Terwilliger,et al. SOLVE and RESOLVE: automated structure solution, density modification and model building. , 2004, Journal of synchrotron radiation.
[29] D T Jones,et al. Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.
[30] About the hybrid Fourier syntheses: a probabilistic approach. , 2011, Acta crystallographica. Section A, Foundations of crystallography.
[31] J. Hermoso,et al. Structure and Cell Wall Cleavage by Modular Lytic Transglycosylase MltC of Escherichia coli , 2014, ACS chemical biology.
[32] Kam Y. J. Zhang,et al. A fragmentation and reassembly method for ab initio phasing. , 2015, Acta Crystallographica Section D: Biological Crystallography.
[33] Claudia Millán,et al. Structure solution with ARCIMBOLDO using fragments derived from distant homology models , 2014, The FEBS journal.
[34] R. Read,et al. Improved estimates of coordinate error for molecular replacement , 2013, Acta crystallographica. Section D, Biological crystallography.
[35] Randy J. Read,et al. Improvement of molecular-replacement models with Sculptor , 2011, Acta crystallographica. Section D, Biological crystallography.
[36] Yang Zhang,et al. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field , 2012, Proteins.
[37] C. Giacovazzo,et al. Ab initio phasing at resolution higher than experimental resolution. , 2005, Acta crystallographica. Section D, Biological crystallography.
[38] Andrea Thorn,et al. Extending molecular-replacement solutions with SHELXE , 2013, Acta crystallographica. Section D, Biological crystallography.
[39] E. Pohl,et al. The Effectors and Sensory Sites of Formaldehyde-responsive Regulator FrmR and Metal-sensing Variant * , 2016, The Journal of Biological Chemistry.
[40] G. Vriend,et al. Prediction of protein conformational freedom from distance constraints , 1997, Proteins.
[41] Massimo D Sammito,et al. ALEPH: a network-oriented approach for the generation of fragment-based libraries and for structure interpretation , 2020, Acta crystallographica. Section D, Structural biology.
[42] R. Othman,et al. Computational identification of self‐inhibitory peptides from envelope proteins , 2012, Proteins.
[43] Randy J. Read,et al. Experiences with a new translation-function program , 1987 .
[44] Randy J Read,et al. Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .
[45] Martyn D. Winn,et al. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models , 2015, Acta crystallographica. Section D, Biological crystallography.
[46] Garib N. Murshudov,et al. Model preparation in MOLREP and examples of model improvement using X-ray data , 2007, Acta crystallographica. Section D, Biological crystallography.
[47] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[48] Randy J Read,et al. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error , 2016, Acta crystallographica. Section D, Structural biology.
[49] George M. Sheldrick,et al. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.
[50] Ronan M Keegan,et al. Ensembles generated from crystal structures of single distant homologues solve challenging molecular-replacement cases in AMPLE , 2018, Acta crystallographica. Section D, Structural biology.
[51] Randy J Read,et al. Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Rotation Functions Biological Crystallography Likelihood-enhanced Fast Rotation Functions , 2003 .
[52] P. Emsley,et al. Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.
[53] P. Bradley,et al. High-resolution structure prediction and the crystallographic phase problem , 2007, Nature.
[54] G. Sheldrick,et al. Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.
[55] Isabel Usón,et al. ALIXE: a phase-combination tool for fragment-based molecular replacement , 2020, Acta crystallographica. Section D, Structural biology.
[56] Michael Kokkinidis,et al. Structure determination of a small protein through a 23-dimensional molecular-replacement search. , 2003, Acta crystallographica. Section D, Biological crystallography.
[57] Randy J Read,et al. Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination , 2018, Acta crystallographica. Section D, Structural biology.
[58] A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives , 2008, Acta crystallographica. Section D, Biological crystallography.
[59] Randy J. Read,et al. Pushing the boundaries of molecular replacement with maximum likelihood. , 2001, Acta crystallographica. Section D, Biological crystallography.
[60] J. Foadi. General concepts underlying ACORN, a computer program for the solution of protein structures , 2003 .
[61] Norman Stein,et al. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement , 2008 .
[62] C. Giacovazzo,et al. Protein phasing at non-atomic resolution by combining Patterson and VLD techniques. , 2014, Acta crystallographica. Section D, Biological crystallography.
[63] Ronan M Keegan,et al. Molecular replacement using structure predictions from databases , 2019, Acta crystallographica. Section D, Structural biology.
[64] W. Scott,et al. Solving novel RNA structures using only secondary structural fragments. , 2010, Methods.
[65] G. Sheldrick,et al. Practical structure solution with ARCIMBOLDO , 2012, Acta crystallographica. Section D, Biological crystallography.
[66] G. Sheldrick,et al. Advances in direct methods for protein crystallography. , 1999, Current opinion in structural biology.
[67] N. Pannu,et al. REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.