Quantum group blind signature scheme without entanglement

Abstract In this paper we propose a quantum group blind signature scheme designed for distributed e-voting system. Our scheme combines the properties of group signature and blind signature to provide anonymity of voters in an e-voting system. The unconditional security of our scheme is ensured by quantum mechanics. Without employing entanglement, the proposed scheme is easier to be realized comparing with other quantum signature schemes.

[1]  Qiao-Yan Wen,et al.  Threshold proxy quantum signature scheme with threshold shared verification , 2008 .

[2]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[3]  David Chaum,et al.  Advances in Cryptology: Proceedings Of Crypto 83 , 2012 .

[4]  Olivier Markowitch,et al.  A NOTE ON AN ARBITRATED QUANTUM SIGNATURE SCHEME , 2009 .

[5]  Stefan A. Brands,et al.  Untraceable Off-line Cash in Wallet with Observers , 2002 .

[6]  Yuan Tian,et al.  A weak blind signature scheme based on quantum cryptography , 2009 .

[7]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[8]  Wang Tian-yin,et al.  Fair quantum blind signatures , 2010 .

[9]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[10]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[11]  Burton S. Kaliski Advances in Cryptology - CRYPTO '97 , 1997 .

[12]  Wen Qiao-Yan,et al.  Scalable Arbitrated Quantum Signature of Classical Messages with Multi-Signers , 2010 .

[13]  Yuan Tian,et al.  A group signature scheme based on quantum teleportation , 2010 .

[14]  Aggelos Kiayias,et al.  Traceable Signatures , 2004, EUROCRYPT.

[15]  Moon Ho Lee,et al.  CONTINUOUS VARIABLE QUANTUM SIGNATURE ALGORITHM , 2007 .

[16]  Hwayean Lee,et al.  Arbitrated quantum signature scheme with message recovery , 2004 .

[17]  Yang Yu-Guang Multi-proxy quantum group signature scheme with threshold shared verification , 2008 .

[18]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[19]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[20]  Chin-Laung Lei,et al.  Low-computation blind signature schemes based on quadratic residues , 1996 .

[21]  Peter Wayner,et al.  Digital cash - commerce on the net , 1995 .

[22]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[23]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..