Development of self-powered wireless structural health monitoring (SHM) for wind turbine blades

University of Minnesota Ph.D. dissertation. January 2015. Major: Mechanical Engineering. Advisors: Professor Susan C. Mantell and Professor Peter J. Seiler. 1 computer file (PDF); viii, 137 pages, appendices A-D.

[1]  Changki Mo,et al.  Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications , 2014 .

[2]  G. Winkel,et al.  Fatigue behaviour of fibreglass wind turbine blade material under variable amplitude loading , 1997 .

[3]  Kevin M. Farinholt,et al.  Structural Damage Identification in Wind Turbine Blades Using Piezoelectric Active Sensing , 2011 .

[4]  Saibal Roy,et al.  Self-powered autonomous wireless sensor node using vibration energy harvesting , 2008 .

[5]  Charles R. Farrar,et al.  Wireless energy transmission to supplement energy harvesters in sensor network applications , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  Jian Shi,et al.  Fundamental study of mechanical energy harvesting using piezoelectric nanostructures , 2010 .

[7]  A. C. Hansen,et al.  WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised) , 2006 .

[8]  Peter J Seiler,et al.  Wind turbine blades as a strain energy source for energy harvesting , 2013 .

[9]  M.T. Iqbal,et al.  Reliability and condition monitoring of a wind turbine , 2005, Canadian Conference on Electrical and Computer Engineering, 2005..

[10]  Daniel J. Inman,et al.  Piezoelectric power generation for civil infrastructure systems , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  Charles R. Farrar,et al.  Application of a Wireless Sensor Node to Health Monitoring of Operational Wind Turbine Blades , 2011 .

[12]  Kathryn E. Johnson,et al.  A tutorial on the dynamics and control of wind turbines and wind farms , 2009, 2009 American Control Conference.

[13]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[14]  Tiedo Tinga,et al.  Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network , 2013 .

[15]  Y. C. Yeh,et al.  Triple-triple redundant 777 primary flight computer , 1996, 1996 IEEE Aerospace Applications Conference. Proceedings.

[16]  Daniel J. Inman,et al.  Impedance-based structural health monitoring of wind turbine blades , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[17]  Gangbing Song,et al.  Wind turbine blade health monitoring with piezoceramic-based wireless sensor network , 2013 .

[18]  Jung-Ryul Lee,et al.  Structural health monitoring for a wind turbine system: a review of damage detection methods , 2008 .

[19]  Jay Johnson,et al.  Fatigue Testing of 9 m Carbon Fiber Wind Turbine Research Blades , 2008 .

[20]  Randall Swisher Keys to Achieving 20 Percent Wind by 2030 , 2009 .

[21]  Per Hørlyk Nielsen,et al.  Damage Detection Methods on Wind Turbine Blade Testing with Wired and Wireless Accelerometer Sensors , 2014 .

[22]  Rune Brincker,et al.  Vibration Based Inspection of Civil Engineering Structures , 1993 .

[23]  Deborah Estrin,et al.  A wireless sensor network For structural monitoring , 2004, SenSys '04.

[24]  Jonathan White,et al.  Impact Loading and Damage Detection in a Carbon Composite TX-100 Wind Turbine Rotor Blade , 2008 .

[25]  Siak Piang Lim,et al.  Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications , 2004 .

[26]  Nam Phan,et al.  Energy Harvesting Wireless Sensors for Helicopter Damage Tracking , 2006 .

[27]  Michael Goldfarb,et al.  On the Efficiency of Electric Power Generation With Piezoelectric Ceramic , 1999 .

[28]  Mark A. Rumsey,et al.  Structural health monitoring of wind turbine blades , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[29]  Y. C. Yeh,et al.  Safety critical avionics for the 777 primary flight controls system , 2001, 20th DASC. 20th Digital Avionics Systems Conference (Cat. No.01CH37219).

[30]  R. Poore,et al.  Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002 , 2003 .

[31]  Alex Elvin,et al.  Feasibility of structural monitoring with vibration powered sensors , 2006 .

[32]  D. J. Malcolm,et al.  WindPACT Turbine Rotor Design Study , 2006 .

[33]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[34]  Kevin M. Farinholt,et al.  Modal Analysis and SHM Investigation of CX-100 Wind Turbine Blade , 2011 .

[35]  Jerome Peter Lynch,et al.  An overview of wireless structural health monitoring for civil structures , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Yozo Fujino,et al.  Intelligent bridge maintenance system using MEMS and network technology , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  Jerome P. Lynch,et al.  Validation of a wireless modular monitoring system for structures , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[38]  Douglas E. Adams,et al.  Health monitoring of structural materials and components : methods with applications , 2007 .

[39]  B. Hahn,et al.  Reliability of Wind Turbines , 2007 .

[40]  Donna Heimiller,et al.  2018 Wind Technologies Market Report , 2010 .

[41]  Gunner Chr. Larsen,et al.  Fundamentals for remote structural health monitoring of wind turbine blades - a preproject , 2002 .

[42]  Jerome P. Lynch,et al.  A summary review of wireless sensors and sensor networks for structural health monitoring , 2006 .

[43]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[44]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[45]  R. P. G. Collinson,et al.  Introduction to Avionics Systems , 2003 .

[46]  Yang Wang,et al.  Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors , 2006, Smart Materials and Structures.

[47]  Jerome P. Lynch,et al.  The Design of a Wireless Sensing Unit for Structural Health Monitoring , 2001 .

[48]  Yi-Chung Shu,et al.  Efficiency of energy conversion for a piezoelectric power harvesting system , 2006 .

[49]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[50]  Anindya Ghoshal,et al.  Structural health monitoring techniques for wind turbine blades , 2000 .

[51]  Joao P. S. Catalao,et al.  Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid , 2013 .

[52]  Lan Xin Hu,et al.  Remote Wireless Monitoring System for Wind Turbine , 2013 .

[53]  Joshua A. Paquette,et al.  Evaluation of NASA PZT Sensor/Actuator for Structural Health Monitoring of a Wind Turbine Blade , 2007 .

[54]  Kevin M. Farinholt,et al.  Energy harvesting to power sensing hardware onboard wind turbine blade , 2011 .

[55]  Hoon Sohn,et al.  A review of structural health monitoring literature 1996-2001 , 2002 .

[56]  Yang Wang,et al.  Vibration Monitoring of the Voigt Bridge using Wired and Wireless Monitoring Systems , 2006 .

[57]  Seth Stovack Kessler,et al.  Piezoelectric-based in-situ damage detection of composite materials for structural health monitoring systems , 2002 .

[58]  E. Peter Carden,et al.  Vibration Based Condition Monitoring: A Review , 2004 .

[59]  Susan C. Mantell,et al.  Wireless structural health monitoring of wind turbine blades using an energy harvester as a sensor , 2014 .

[60]  Charles R. Farrar,et al.  Structural health monitoring of wind turbines: method and application to a HAWT , 2011 .

[61]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[62]  Sang-Gook Kim,et al.  DESIGN CONSIDERATIONS FOR MEMS-SCALE PIEZOELECTRIC MECHANICAL VIBRATION ENERGY HARVESTERS , 2005 .

[63]  S. Farritor,et al.  On low-frequency electric power generation with PZT ceramics , 2005, IEEE/ASME Transactions on Mechatronics.

[64]  Wolfgang Ecke,et al.  A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade , 2005, International Conference on Optical Fibre Sensors.

[65]  A. M. R. Ribeiro,et al.  A review of vibration-based structural health monitoring with special emphasis on composite materials , 2006 .

[66]  Mariusz Pawlak,et al.  Optimisation of wind turbine blades , 2005 .

[67]  Herbert J. Sutherland,et al.  On the Fatigue Analysis of Wind Turbines , 1999 .

[68]  Robert Bleeg,et al.  Commercial jet transport fly-by-wire architecture considerations , 1988 .

[69]  Ranjan Ganguli,et al.  Modeling progressive damage accumulation in thin walled composite beams for rotor blade applications , 2006 .

[70]  M. J. Sundaresan,et al.  Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006 , 2006 .

[71]  Dirk Söffker,et al.  Advanced Control Design for Wind Turbines , 2011 .

[72]  Charles R. Farrar,et al.  Energy Harvesting for Structural Health Monitoring Sensor Networks , 2008 .

[73]  Michael J. Anderson,et al.  Efficiency of energy conversion for devices containing a piezoelectric component , 2004 .

[74]  Sukun Kim,et al.  Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.