STATE‐SPACE DIGITAL PID CONTROLLER DESIGN FOR MULTIVARIABLE ANALOG SYSTEMS WITH MULTIPLE TIME DELAYS

This paper presents a discrete-time state-space methodology for optimal design of digital PID controllers for multivariable analog systems with multiple time delays. The multiple time-delayed multivariable analog systems are formulated in a state-space generic form so that the exact discrete-time state-space model can be constructed. Then, the optimal digital PID controller is designed via a state-feedback and state-feedforward LQR approach. The developed PID controller can be applied to a general time-delayed multivariable analog system represented by a semi-proper or strictly proper transfer function matrix. Illustrative examples are given to compare the performance of the proposed approach with alternative techniques.

[1]  Leang S. Shieh,et al.  PID controller design for disturbed multivariable systems , 2004 .

[2]  Tongwen Chen,et al.  A technique for optimal digital redesign of analog controllers , 1996, IEEE Trans. Control. Syst. Technol..

[3]  Leang S. Shieh,et al.  Optimal digital redesign of cascaded analogue controllers , 1991 .

[4]  Karl Johan Åström,et al.  Dominant pole placement for multi-loop control systems , 2002, Autom..

[5]  Eduardo F. Camacho,et al.  Robust tuning of dead-time compensators for processes with an integrator and long dead-time , 1999, IEEE Trans. Autom. Control..

[6]  Richard Marquez,et al.  An extension of predictive control, PID regulators and Smith predictors to some linear delay systems , 2002 .

[7]  Tong Heng Lee,et al.  On the design of multivariable PID controllers via LMI approach , 2002, Autom..

[8]  D. Seborg,et al.  Multiloop PI/PID controller design based on Gershgorin bands , 2001 .

[9]  Qing-Guo Wang,et al.  An effective frequency domain approach to tuning non-PID controllers for high performance. , 2002, ISA transactions.

[10]  Emilia Fridman,et al.  Steady Modes in Relay Control Systems With Time Delay and Periodic Disturbances , 2000 .

[11]  Leang-San Shieh,et al.  DIGITAL PID CONTROLLER DESIGN FOR DELAYED MULTIVARIABLE SYSTEMS , 2004 .

[12]  Shankar P. Bhattacharyya,et al.  New results on the synthesis of PID controllers , 2002, IEEE Trans. Autom. Control..

[13]  Jason Sheng-Hon Tsai,et al.  Hybrid suboptimal control of multi-rate multi-loop sampled-data systems , 1992 .

[14]  B. C. Kuo,et al.  Digital redesign of continuous systems by matching of states at multiple sampling periods , 1974, Autom..

[15]  Jason Sheng-Hong Tsai,et al.  Stability Analysis of Large-Scale Time-Delay Systems Via Evolutionary Programming Algorithm , 2001 .

[16]  Karl Henrik Johansson,et al.  Design of decoupled PI controllers for two-by-two systems , 2002 .

[17]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[18]  M. Polites Ideal state reconstructor for deterministic digital control systems , 1989 .

[19]  Ce Richard Liu,et al.  Digital PID controller design for multivariable analogue systems with computational input-delay , 2004, IMA J. Math. Control. Inf..

[20]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[21]  Benjamin C. Kuo,et al.  Digital Control Systems , 1977 .

[22]  Jer-Guang Hsieh,et al.  On the stability of uncertain systems with multiple time-varying delays , 1997, IEEE Trans. Autom. Control..

[23]  Chang Chieh Hang,et al.  Single-loop controller design via IMC principles , 2001, Autom..

[24]  Graham C. Goodwin,et al.  Control System Design , 2000 .