Towards molecular simulations that are transparent, reproducible, usable by others, and extensible (TRUE)

ABSTRACT Systems composed of soft matter (e.g. liquids, polymers, foams, gels, colloids, and most biological materials) are ubiquitous in science and engineering, but molecular simulations of such systems pose particular computational challenges, requiring time and/or ensemble-averaged data to be collected over long simulation trajectories for property evaluation. Performing a molecular simulation of a soft matter system involves multiple steps, which have traditionally been performed by researchers in a ‘bespoke’ fashion, resulting in many published soft matter simulations not being reproducible based on the information provided in the publications. To address the issue of reproducibility and to provide tools for computational screening, we have been developing the open-source Molecular Simulation and Design Framework (MoSDeF) software suite. In this paper, we propose a set of principles to create Transparent, Reproducible, Usable by others, and Extensible (TRUE) molecular simulations. MoSDeF facilitates the publication and dissemination of TRUE simulations by automating many of the critical steps in molecular simulation, thus enhancing their reproducibilitya. We provide several examples of TRUE molecular simulations: All of the steps involved in creating, running and extracting properties from the simulations are distributed on open-source platforms (within MoSDeF and on GitHub), thus meeting the definition of TRUE simulations. GRAPHICAL ABSTRACT

[1]  Roberto Car,et al.  Comment on "The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water" [I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)]. , 2018, The Journal of chemical physics.

[2]  K. Madison,et al.  Barrier function of the skin: "la raison d'être" of the epidermis. , 2003, The Journal of investigative dermatology.

[3]  John D Chodera,et al.  A Simple Method for Automated Equilibration Detection in Molecular Simulations. , 2016, Journal of chemical theory and computation.

[4]  Ricardo Bicca de Alencastro,et al.  MKTOP: a program for automatic construction of molecular topologies , 2008 .

[5]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[6]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[7]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[8]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[9]  Peter T. Cummings,et al.  A model-integrated computing approach to nanomaterials simulation , 2012, Theoretical Chemistry Accounts.

[10]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[11]  Coray M. Colina,et al.  Polymatic: a generalized simulated polymerization algorithm for amorphous polymers , 2013, Theoretical Chemistry Accounts.

[12]  M. Baker 1,500 scientists lift the lid on reproducibility , 2016, Nature.

[13]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[14]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[15]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[16]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[17]  Clare McCabe,et al.  Surface and Frictional Properties of Two-Component Alkylsilane Monolayers and Hydroxyl-Terminated Monolayers on Silicon , 2009 .

[18]  Rui P. S. Fartaria,et al.  Phase Diagram and Sublimation Enthalpies of Model C60 Revisited , 2004 .

[19]  Clare McCabe,et al.  Simulation study of the structure and phase behavior of ceramide bilayers and the role of lipid head group chemistry. , 2013, Journal of chemical theory and computation.

[20]  Andrew S. Paluch,et al.  Cassandra: An open source Monte Carlo package for molecular simulation , 2017, J. Comput. Chem..

[21]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[22]  Peter T. Cummings,et al.  Formalizing atom-typing and the dissemination of force fields with foyer , 2018, Computational Materials Science.

[23]  Anton Nekrutenko,et al.  Ten Simple Rules for Reproducible Computational Research , 2013, PLoS Comput. Biol..

[24]  David W. Walker,et al.  Concurrency and Computation Practice and Experience , 2018 .

[25]  A. Weerheim,et al.  Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography , 2001, Archives of Dermatological Research.

[26]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[27]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[28]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[29]  Sharon C. Glotzer,et al.  Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices , 2011, J. Comput. Phys..

[30]  Michael P. Short,et al.  Current Opinion in Solid State and Materials Science , 2013 .

[31]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[32]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[33]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[34]  Peter T. Cummings,et al.  Ion Pairing Controls Physical Properties of Ionic Liquid-Solvent Mixtures. , 2019, The journal of physical chemistry. B.

[35]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[36]  Clare McCabe,et al.  Perfluoropolyethers: Development of an All-Atom Force Field for Molecular Simulations and Validation with New Experimental Vapor Pressures and Liquid Densities. , 2017, The journal of physical chemistry. B.

[37]  Michael E. Fortunato,et al.  pysimm: A python package for simulation of molecular systems , 2017, SoftwareX.

[38]  Noel M. O'Boyle,et al.  De novo design of molecular wires with optimal properties for solar energy conversion , 2011, Journal of Cheminformatics.

[39]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[40]  Nashville Tennessee,et al.  Institute for Software Integrated Systems , 2001 .

[41]  Hans Hasse,et al.  Round Robin Study: Molecular Simulation of Thermodynamic Properties from Models with Internal Degrees of Freedom. , 2017, Journal of chemical theory and computation.

[42]  Loren Schwiebert,et al.  GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids , 2019, SoftwareX.

[43]  P. A. D. DeMaine,et al.  Integrated Systems , 1991 .

[44]  Mohammad Atif Faiz Afzal,et al.  Accelerated Discovery of High-Refractive-Index Polyimides via First-Principles Molecular Modeling, Virtual High-Throughput Screening, and Data Mining , 2019, The Journal of Physical Chemistry C.

[45]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[46]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[47]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[48]  LarssonPer,et al.  GROMACS 4.5 , 2013 .

[49]  W. Im,et al.  Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations , 2007, PloS one.

[50]  David L Mobley,et al.  Toward Learned Chemical Perception of Force Field Typing Rules. , 2019, Journal of chemical theory and computation.

[51]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[52]  Peter T. Cummings,et al.  Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size , 2011 .

[53]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[54]  Joan-Emma Shea,et al.  Moltemplate a Coarse-Grained Model Assembly Tool , 2013 .

[55]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[56]  Peter T. Cummings,et al.  Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[57]  Wei Chen,et al.  FireWorks: a dynamic workflow system designed for high‐throughput applications , 2015, Concurr. Comput. Pract. Exp..

[58]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[59]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[60]  Andrew G. Glen,et al.  APPL , 2001 .

[61]  Lorena A Barba,et al.  The hard road to reproducibility. , 2016, Science.

[62]  Vyas Ramasubramani,et al.  signac - A Simple Data Management Framework , 2016, ArXiv.

[63]  Alexander D. MacKerell,et al.  Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing , 2012, J. Chem. Inf. Model..

[64]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[65]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. Improved United-Atom Description of Ethane and Ethylene , 2017 .

[66]  P. Kent,et al.  Computational Insights into Materials and Interfaces for Capacitive Energy Storage , 2017, Advanced science.

[67]  J. Ilja Siepmann,et al.  An online parameter and property database for the TraPPE force field , 2014 .

[68]  J. Ilja Siepmann,et al.  Vapor−Liquid and Vapor−Solid Phase Equilibria of Fullerenes: The Role of the Potential Shape on the Triple Point , 2003 .

[69]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  Randall Q. Snurr,et al.  Foundations of Molecular Modeling and Simulation: Select Papers from FOMMS 2015 , 2015 .

[72]  K Bourzac C&EN talks with Insung Choi, cell protector , 2016 .

[73]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[74]  Susan B. Sinnott,et al.  NSF cyberinfrastructures: A new paradigm for advancing materials simulation , 2013 .

[75]  Thomas C. Herndon,et al.  Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff , 2014 .

[76]  Tristan Bereau,et al.  Hoobas: A highly object-oriented builder for molecular dynamics , 2019, Computational Materials Science.

[77]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[78]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[79]  Peter T. Cummings,et al.  MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films. , 2020, Journal of chemical theory and computation.

[80]  Julien Michel,et al.  BioSimSpace: An interoperable Python framework for biomolecular simulation , 2019, J. Open Source Softw..

[81]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[82]  David L Mobley,et al.  Escaping Atom Types in Force Fields Using Direct Chemical Perception. , 2018, Journal of chemical theory and computation.

[83]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[84]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[85]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[86]  Gabor Karsai,et al.  Model-Integrated Computing , 1997, Computer.

[87]  Pramod C. Nair,et al.  An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. , 2011, Journal of chemical theory and computation.

[88]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[89]  Arne Elofsson,et al.  Ten simple rules on how to create open access and reproducible molecular simulations of biological systems , 2019, PLoS Comput. Biol..

[90]  Clare McCabe,et al.  Influence of Surface Morphology on the Shear-Induced Wear of Alkylsilane Monolayers: Molecular Dynamics Study. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[91]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[92]  D. J. Adams,et al.  Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid , 1975 .

[93]  Zhongyuan Huang,et al.  Supercapacitor based on graphene and ionic liquid electrolyte , 2011 .

[94]  Peter T. Cummings,et al.  Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential , 2016 .

[95]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[96]  Kenneth S. Rogoff,et al.  Growth in a Time of Debt , 2010 .

[97]  Peter T Cummings,et al.  Scalable Screening of Soft Matter: A Case Study of Mixtures of Ionic Liquids and Organic Solvents. , 2019, The journal of physical chemistry. B.