Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation

A quantitative understanding of how sensory signals are transformed into motor outputs places useful constraints on brain function and helps to reveal the brain’s underlying computations. We investigate how the nematode Caenorhabditis elegans responds to time-varying mechanosensory signals using a high-throughput optogenetic assay and automated behavior quantification. We find that the behavioral response is tuned to temporal properties of mechanosensory signals, such as their integral and derivative, that extend over many seconds. Mechanosensory signals, even in the same neurons, can be tailored to elicit different behavioral responses. Moreover, we find that the animal’s response also depends on its behavioral context. Most dramatically, the animal ignores all tested mechanosensory stimuli during turns. Finally, we present a linear-nonlinear model that predicts the animal’s behavioral response to stimulus.

[1]  Ryan P. Adams,et al.  Mapping Sub-Second Structure in Mouse Behavior , 2015, Neuron.

[2]  So Kanazawa,et al.  The 3/4 view effect and the rotation information in infants' face recognition , 2010 .

[3]  R. Kerr,et al.  In Vivo Imaging of C. elegans Mechanosensory Neurons Demonstrates a Specific Role for the MEC-4 Channel in the Process of Gentle Touch Sensation , 2003, Neuron.

[4]  N. A. Croll Behavioural analysis of nematode movement. , 1975, Advances in parasitology.

[5]  Liqun Luo,et al.  Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans , 2012, Nature Methods.

[6]  Subhajyoti De,et al.  Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans , 2007, Neuron.

[7]  Damon A. Clark,et al.  Temporal Activity Patterns in Thermosensory Neurons of Freely Moving Caenorhabditis elegans Encode Spatial Thermal Gradients , 2007, The Journal of Neuroscience.

[8]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[9]  Thomas C. Evans,et al.  Transformation and microinjection , 2006 .

[10]  M. Chalfie,et al.  Regulation of Mechanosensation in C. elegans through Ubiquitination of the MEC-4 Mechanotransduction Channel , 2015, The Journal of Neuroscience.

[11]  Steven J. Husson,et al.  Specific Expression of Channelrhodopsin-2 in Single Neurons of Caenorhabditis elegans , 2012, PloS one.

[12]  C. Fang-Yen,et al.  Comparing Caenorhabditis elegans gentle and harsh touch response behavior using a multiplexed hydraulic microfluidic device. , 2017, Integrative biology : quantitative biosciences from nano to macro.

[13]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[15]  H. Bringmann,et al.  Reduced activity of a sensory neuron during a sleep-like state in Caenorhabditis elegans , 2011, Current Biology.

[16]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[17]  Stephen A Baccus,et al.  Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System , 2018, The Journal of Neuroscience.

[18]  Cori Bargmann,et al.  Temporal Responses of C. elegans Chemosensory Neurons Are Preserved in Behavioral Dynamics , 2014, Neuron.

[19]  Paul W Sternberg,et al.  Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[20]  Matthew M. Crane,et al.  Real-time multimodal optical control of neurons and muscles in freely-behaving Caenorhabditis elegans , 2011, Nature Methods.

[21]  David Biron,et al.  Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms , 2014, eLife.

[22]  Adam J. Calhoun,et al.  Quantifying behavior to solve sensorimotor transformations: advances from worms and flies , 2017, Current Opinion in Neurobiology.

[23]  A. Gomez-Marin,et al.  Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour , 2015, Journal of The Royal Society Interface.

[24]  Daniel Ramot,et al.  The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes , 2008, PloS one.

[25]  M. Chalfie,et al.  The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals , 2005, Nature Neuroscience.

[26]  Contribution of neurons to habituation to mechanical stimulation in Caenorhabditis elegans. , 2001, Journal of neurobiology.

[27]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[28]  Yongmin Cho,et al.  On-chip functional neuroimaging with mechanical stimulation in Caenorhabditis elegans larvae for studying development and neural circuits† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7lc01201b , 2018, Lab on a chip.

[29]  Rex A. Kerr,et al.  Intensity discrimination deficits cause habituation changes in middle-aged Caenorhabditis elegans , 2013, Neurobiology of Aging.

[30]  M. Félix,et al.  The natural history of Caenorhabditis elegans , 2010, Current Biology.

[31]  Bertalan Gyenes,et al.  Deriving Shape-Based Features for C. elegans Locomotion Using Dimensionality Reduction Methods , 2016, bioRxiv.

[32]  K. Krishnamoorthy,et al.  A More Powerful Test for Comparing Two Poisson Means , 2002 .

[33]  J. Sulston,et al.  Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. , 1981, Developmental biology.

[34]  Catharine H. Rankin,et al.  Mutations of the Caenorhabditis elegansBrain-Specific Inorganic Phosphate Transporter eat-4Affect Habituation of the Tap–Withdrawal Response without Affecting the Response Itself , 2000, The Journal of Neuroscience.

[35]  D. van der Kooy,et al.  Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans , 2004, The EMBO journal.

[36]  Yiran Zhao,et al.  Reverse-Correlation Analysis of the Mechanosensation Circuit and Behavior in C. elegans Reveals Temporal and Spatial Encoding , 2017 .

[37]  Konrad P. Körding,et al.  Machine Learning for Neural Decoding , 2017, eNeuro.

[38]  C. Rankin,et al.  A developmental analysis of spontaneous and reflexive reversals in the nematode Caenorhabditis elegans. , 1990, Journal of neurobiology.

[39]  Dario L. Ringach,et al.  Reverse correlation in neurophysiology , 2004, Cogn. Sci..

[40]  Jennifer K Pirri,et al.  The C. elegans Touch Response Facilitates Escape from Predacious Fungi , 2011, Current Biology.

[41]  E. Jorgensen,et al.  Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction , 2009, Proceedings of the National Academy of Sciences.

[42]  N. A. Croll Components and patterns in the behaviour of the nematode Caenorhabditis elegans , 2009 .

[43]  Yi Deng,et al.  Dynamic sensory cues shape song structure in Drosophila , 2014, Nature.

[44]  Natalie M Bernat,et al.  Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration , 2015, eLife.

[45]  Joshua W. Shaevitz,et al.  Automatically tracking neurons in a moving and deforming brain , 2016, PLoS Comput. Biol..

[46]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[47]  Mason Klein,et al.  Reverse-correlation analysis of navigation dynamics in Drosophila larva using optogenetics , 2015, bioRxiv.

[48]  Alessandro Sanzeni,et al.  Tissue mechanics govern the rapidly adapting and symmetrical response to touch , 2015, Proceedings of the National Academy of Sciences.

[49]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[50]  Forces applied during classical touch assays for Caenorhabditis elegans , 2017, PloS one.

[51]  David M. Raizen,et al.  Lethargus is a Caenorhabditis elegans sleep-like state , 2008, Nature.

[52]  B. Pruitt,et al.  The tactile receptive fields of freely moving Caenorhabditis elegans nematodes. , 2018, Integrative biology : quantitative biosciences from nano to macro.

[53]  Netta Cohen,et al.  Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans , 2016, Neuron.

[54]  Jan Clemens,et al.  The use of computational modeling to link sensory processing with behavior in Drosophila , 2017 .

[55]  Paul W. Sternberg,et al.  Multilevel Modulation of a Sensory Motor Circuit during C. elegans Sleep and Arousal , 2014, Cell.

[56]  M. Chalfie,et al.  Modulation of C. elegans Touch Sensitivity Is Integrated at Multiple Levels , 2014, The Journal of Neuroscience.

[57]  A. Leifer,et al.  Temporal processing and context dependency in C. elegans mechanosensation , 2018, 1803.04085.

[58]  Beth L Pruitt,et al.  MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation. , 2013, Integrative biology : quantitative biosciences from nano to macro.

[59]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[60]  Stanislav Nagy,et al.  Measurements of behavioral quiescence in Caenorhabditis elegans. , 2014, Methods.

[61]  Evan L Ardiel,et al.  Habituation as an adaptive shift in response strategy mediated by neuropeptides , 2017, npj Science of Learning.

[62]  Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory. , 2016, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[63]  R. Kenedi,et al.  Tissue mechanics. , 1975, Physics in medicine and biology.

[64]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[65]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[67]  C. H. Rankin,et al.  Caenorhabditis elegans: A new model system for the study of learning and memory , 1990, Behavioural Brain Research.

[68]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[69]  Laura J. Grundy,et al.  A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion , 2012, Proceedings of the National Academy of Sciences.

[70]  Jennifer K Pirri,et al.  The neuroethology of C. elegans escape , 2012, Current Opinion in Neurobiology.

[71]  Joshua W. Shaevitz,et al.  Efficient Multiple Object Tracking Using Mutually Repulsive Active Membranes , 2012, PloS one.

[72]  Laura J. Grundy,et al.  A database of C. elegans behavioral phenotypes , 2013, Nature Methods.

[73]  William Bialek,et al.  Mapping the stereotyped behaviour of freely moving fruit flies , 2013, Journal of The Royal Society Interface.