Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks.

Three rapid spectroscopic approaches for whole-organism fingerprinting-pyrolysis mass spectrometry (PyMS), Fourier transform infra-red spectroscopy (FT-IR) and dispersive Raman microscopy--were used to analyse a group of 59 clinical bacterial isolates associated with urinary tract infection. Direct visual analysis of these spectra was not possible, highlighting the need to use methods to reduce the dimensionality of these hyperspectral data. The unsupervised methods of discriminant function and hierarchical cluster analyses were employed to group these organisms based on their spectral fingerprints, but none produced wholly satisfactory groupings which were characteristic for each of the five bacterial types. In contrast, for PyMS and FT-IR, the artificial neural network (ANN) approaches exploiting multi-layer perceptrons or radial basis functions could be trained with representative spectra of the five bacterial groups so that isolates from clinical bacteriuria in an independent unseen test set could be correctly identified. Comparable ANNs trained with Raman spectra correctly identified some 80% of the same test set. PyMS and FT-IR have often been exploited within microbial systematics, but these are believed to be the first published data showing the ability of dispersive Raman microscopy to discriminate clinically significant intact bacterial species. These results demonstrate that modern analytical spectroscopies of high intrinsic dimensionality can provide rapid accurate microbial characterization techniques, but only when combined with appropriate chemometrics.

[1]  W. Dixon BMD : biomedical computer programs , 1967 .

[2]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[3]  Igor Nabiev,et al.  Applications of Raman and surface‐enhanced Raman scattering spectroscopy in medicine , 1994 .

[4]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[5]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[6]  James D. Keeler,et al.  Algorithms for Better Representation and Faster Learning in Radial Basis Function Networks , 1989, NIPS.

[7]  Paul J. Werbos,et al.  The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting , 1994 .

[8]  A. Sommer,et al.  Development of Microchannel Thin-Layer Chromatography with Infrared Microspectroscopic Detection , 1994 .

[9]  J. Coello,et al.  Artificial neural networks for multicomponent kinetic determinations. , 1995, Analytical chemistry.

[10]  D. Naumann,et al.  Classification and identification of bacteria by Fourier-transform infrared spectroscopy. , 1991, Journal of general microbiology.

[11]  E M Timmins,et al.  Rapid quantitative analysis of binary mixtures of Escherichia coli strains using pyrolysis mass spectrometry with multivariate calibration and artificial neural networks , 1997, Journal of applied microbiology.

[12]  G. D. Pitt,et al.  Use of a rapid scanning stigmatic Raman imaging spectrograph in the industrial environment , 1994 .

[13]  C. Chatfield Model uncertainty, data mining and statistical inference , 1995 .

[14]  A C Ward,et al.  Rapid identification of species within the Mycobacterium tuberculosis complex by artificial neural network analysis of pyrolysis mass spectra. , 1994, Journal of medical microbiology.

[15]  L. Collier,et al.  Topley & Wilson's Principles of bacteriology, virology and immunity. Volume 4. Virology. , 1990 .

[16]  Douglas B. Kell,et al.  Rapid and Quantitative Analysis of the Pyrolysis Mass Spectra of Complex Binary and Tertiary Mixtures Using Multivariate Calibration and Artificial Neural Networks , 1994 .

[17]  Douglas B. Kell,et al.  Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry with supervised learning: application to the screening of Penicillium chrysogenum fermentations for the overproduction of penicillins☆ , 1995 .

[18]  A. Casadevall,et al.  Crisis in infectious diseases: time for a new paradigm? , 1996, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[19]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[20]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[21]  Douglas B. Kell,et al.  GMP — good modelling practice: an essential component of good manufacturing practice , 1995 .

[22]  Royston Goodacre,et al.  Rapid Differentiation of Closely RelatedCandida Species and Strains by Pyrolysis-Mass Spectrometry and Fourier Transform-Infrared Spectroscopy , 1998, Journal of Clinical Microbiology.

[23]  R. Rava,et al.  Rapid Near-Infrared Raman Spectroscopy of Human Tissue with a Spectrograph and CCD Detector , 1992 .

[24]  Bernhard Schrader,et al.  Infrared and Raman spectroscopy : methods and applications , 1995 .

[25]  Steven K. Rogers,et al.  Perceptual-based hyperspectral image fusion using multiresolution analysis , 1995 .

[26]  Brian Everitt,et al.  Cluster analysis , 1974 .

[27]  F. Marsh,et al.  Diagnosis and management of urinary tract infection in adults. , 1992, BMJ.

[28]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[29]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[30]  D B Kell,et al.  Discrimination between methicillin-resistant and methicillin-susceptible Staphylococcus aureus using pyrolysis mass spectrometry and artificial neural networks. , 1998, The Journal of antimicrobial chemotherapy.

[31]  D B Kell,et al.  Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs. , 1994, The Journal of applied bacteriology.

[32]  W. Windig,et al.  Interpretation of sets of pyrolysis mass spectra by discriminant analysis and graphical rotation , 1983 .

[33]  D. Massart,et al.  The Radial Basis Functions — Partial Least Squares approach as a flexible non-linear regression technique , 1996 .

[34]  F. Hileman,et al.  Pyrolysis mass spectrometry of recent and fossil biomaterials: Compendium and atlas , 1982 .

[35]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[36]  Yves Chauvin,et al.  Backpropagation: theory, architectures, and applications , 1995 .

[37]  B. Kowalski,et al.  The parsimony principle applied to multivariate calibration , 1993 .

[38]  Douglas B. Kell,et al.  Wavelet Denoising of Infrared Spectra , 1997 .

[39]  Bobby R. Hunt,et al.  Enhancement and compression techniques for hyperspectral data , 1994 .

[40]  Lynne Boddy,et al.  A comparison of Radial Basis Function and backpropagation neural networks for identification of marine phytoplankton from multivariate flow cytometry data , 1994, Comput. Appl. Biosci..

[41]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[42]  J. T. Magee,et al.  Modern Techniques for Rapid Microbiological Analysis , 1993 .

[43]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[44]  R. Grüneberg Changes in urinary pathogens and their antibiotic sensitivities, 1971-1992. , 1994, The Journal of antimicrobial chemotherapy.

[45]  H. Herne,et al.  Biomedical Computer Programs. X‐Series Supplement , 1970 .

[46]  Jeanette G. Grasselli,et al.  Analytical Raman spectroscopy , 1991 .

[47]  Harald Labischinski,et al.  Microbiological characterizations by FT-IR spectroscopy , 1991, Nature.

[48]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[49]  D. R. Causton,et al.  A Biologist's Advanced Mathematics , 1977 .

[50]  C. Gutteridge 6 Characterization of Microorganisms by Pyrolysis Mass Spectrometry , 1988 .

[51]  G. D. Pitt,et al.  Confocal Raman Microspectroscopy Using a Stigmatic Spectrograph and CCD Detector , 1994 .

[52]  P. Pappas Laboratory in the diagnosis and management of urinary tract infections. , 1991, The Medical clinics of North America.

[53]  D. Kell,et al.  Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. , 1996, Microbiological reviews.

[54]  Royston Goodacre,et al.  Identification and Discrimination of Oral Asaccharolytic Eubacterium spp. by Pyrolysis Mass Spectrometry and Artificial Neural Networks , 1996, Current Microbiology.

[55]  Paul J. Gemperline,et al.  Nonlinear multivariate calibration using principal components regression and artificial neural networks , 1991 .

[56]  S. Wiberley,et al.  Introduction to infrared and Raman spectroscopy , 1965 .

[57]  J. Greve,et al.  Raman microspectroscopy of single whole cells , 1993 .

[58]  D B Kell,et al.  Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. , 1996, FEMS microbiology letters.

[59]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[60]  Douglas B. Kell,et al.  Diffuse reflectance absorbance spectroscopy taking in chemometrics (DRASTIC). A hyperspectral FT-IR-based approach to rapid screening for metabolite overproduction , 1997 .

[61]  M. Manfait,et al.  Industrial Applications of the Surface-Enhanced Raman Spectroscopy , 1993 .

[62]  Thomas Jackson,et al.  Neural Computing - An Introduction , 1990 .

[63]  K. Nakamoto,et al.  Introductory Raman Spectroscopy , 1994 .

[64]  Ramasamy Manoharan,et al.  UV Resonance Raman Studies of Bacteria , 1992 .

[65]  A C Ward,et al.  Artificial neural network analysis of pyrolysis mass spectrometric data in the identification of Streptomyces strains. , 1993, FEMS microbiology letters.

[66]  K. Abromeit Music Received , 2023, Notes.

[67]  D. Kell,et al.  Pyrolysis mass spectrometry and its applications in biotechnology. , 1996, Current opinion in biotechnology.

[68]  George Chumanov,et al.  Application of surface-enhanced Raman spectroscopy to biological systems , 1991 .

[69]  H. Macfie,et al.  Use of canonical variates analysis in differentiation of bacteria by pyrolysis gas-liquid chromatography. , 1978, Journal of general microbiology.

[70]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[71]  D. Kell,et al.  Quantitative analysis of the adulteration of orange juice with sucrose using pyrolysis mass spectrometry and chemometrics , 1997 .

[72]  Jan Greve,et al.  Development and Application of Raman Microspectroscopic and Raman Imaging Techniques for Cell Biological Studies , 1995 .

[73]  A. Antaki,et al.  Urinary Infections , 1934, L'union medicale du Canada.

[74]  Bryan F. J. Manly,et al.  Multivariate Statistical Methods : A Primer , 1986 .

[75]  Douglas B. Kell,et al.  Rapid Assessment of the Adulteration of Virgin Olive Oils by Other Seed Oils Using Pyrolysis Mass Spectrometry and Artificial Neural Networks , 1993 .

[76]  D B Kell,et al.  Quantitative analysis of multivariate data using artificial neural networks: a tutorial review and applications to the deconvolution of pyrolysis mass spectra. , 1996, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[77]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[78]  Alan C. Ward,et al.  Rapid detection of Verocytotoxin production status in Escherichia coli by artificial neural network analysis of pyrolysis-mass spectra , 1995 .