Kinematic feedback control laws for generating natural arm movements

We propose a stochastic optimal feedback control law for generating natural robot arm motions. Our approach, inspired by the minimum variance principle of Harris and Wolpert (1998 Nature 394 780-4) and the optimal feedback control principles put forth by Todorov and Jordan (2002 Nature Neurosci. 5 1226-35) for explaining human movements, differs in two crucial respects: (i) the endpoint variance is minimized in joint space rather than Cartesian hand space, and (ii) we ignore the dynamics and instead consider only the second-order differential kinematics. The feedback control law generating the motions can be straightforwardly obtained by backward integration of a set of ordinary differential equations; these equations are obtained exactly, without any linear-quadratic approximations. The only parameters to be determined a priori are the variance scale factors, and for both the two-DOF planar arm and the seven-DOF spatial arm, a table of values is constructed based on the given initial and final arm configurations; these values are determined via an optimal fitting procedure, and consistent with existing findings about neuromuscular motor noise levels of human arm muscles. Experiments conducted with a two-link planar arm and a seven-DOF spatial arm verify that the trajectories generated by our feedback control law closely resemble human arm motions, in the sense of producing nearly straight-line hand trajectories, having bell-shaped velocity profiles, and satisfying Fitts Law.

[1]  Steven K Charles,et al.  Dynamics of wrist and forearm rotations. , 2014, Journal of biomechanics.

[2]  Frank Chongwoo Park,et al.  Optimal robot motions for physical criteria , 2001, J. Field Robotics.

[3]  Domenico Campolo,et al.  Intrinsic Constraints of Neural Origin: Assessment and Application to Rehabilitation Robotics , 2009, IEEE Transactions on Robotics.

[4]  Mitsuo Kawato,et al.  Equilibrium-Point Control Hypothesis Examined by Measured Arm Stiffness During Multijoint Movement , 1996, Science.

[5]  T. Flash,et al.  The control of hand equilibrium trajectories in multi-joint arm movements , 1987, Biological Cybernetics.

[6]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[8]  Christopher G. Atkeson,et al.  Adapting human motion for the control of a humanoid robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[9]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[10]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[11]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  D. Tweed,et al.  Task-Dependent Constraints in Motor Control: Pinhole Goggles Make the Head Move Like an Eye , 2000, The Journal of Neuroscience.

[13]  Pietro G. Morasso,et al.  Passive Motion Paradigm: An Alternative to Optimal Control , 2011, Front. Neurorobot..

[14]  Domenico Campolo,et al.  Pointing with the wrist: a postural model for Donders’ law , 2011, Experimental Brain Research.

[15]  Jun Nakanishi,et al.  A unifying framework for robot control with redundant DOFs , 2007, Auton. Robots.

[16]  Anthony A. Maciejewski,et al.  On the implementation of velocity control for kinematically redundant manipulators , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[17]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[18]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[19]  H. Cruse,et al.  On the cost functions for the control of the human arm movement , 1990, Biological Cybernetics.

[20]  C. K. Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, SIGGRAPH 2005.

[21]  T. Flash,et al.  Intrinsic joint kinematic planning. I: Reassessing the Listing’s law constraint in the control of three-dimensional arm movements , 2006, Experimental Brain Research.

[22]  C. Atkeson,et al.  Kinematic features of unrestrained vertical arm movements , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[24]  Andrea Maria Zanchettin,et al.  Achieving Humanlike Motion: Resolving Redundancy for Anthropomorphic Industrial Manipulators , 2013, IEEE Robotics & Automation Magazine.

[25]  M. Flanders,et al.  Do arm postures vary with the speed of reaching? , 1999, Journal of neurophysiology.

[26]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Jun Nakanishi,et al.  Operational Space Control: A Theoretical and Empirical Comparison , 2008, Int. J. Robotics Res..

[28]  J. F. Soechting,et al.  Moving effortlessly in three dimensions: does Donders' law apply to arm movement? , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Stefan Schaal,et al.  Learning objective functions for manipulation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[30]  P. Morasso,et al.  Kinematic networks , 1988, Biological Cybernetics.

[31]  David A. Gabriel,et al.  Shoulder and elbow muscle activity in goal-directed arm movements , 1997, Experimental Brain Research.

[32]  Oussama Khatib,et al.  Gauss' principle and the dynamics of redundant and constrained manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[33]  R A Abrams,et al.  Optimality in human motor performance: ideal control of rapid aimed movements. , 1988, Psychological review.

[34]  M. Kawato,et al.  Formation and control of optimal trajectory in human multijoint arm movement , 1989, Biological Cybernetics.

[35]  M. Hinder,et al.  The Case for an Internal Dynamics Model versus Equilibrium Point Control in Human Movement , 2003, The Journal of physiology.

[36]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, ACM Trans. Graph..

[37]  J. V. Van Gisbergen,et al.  Kinematic strategies for upper arm-forearm coordination in three dimensions. , 2000, Journal of neurophysiology.

[38]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[39]  R. Ivry,et al.  The coordination of movement: optimal feedback control and beyond , 2010, Trends in Cognitive Sciences.

[40]  V. Haimo Finite time controllers , 1986 .

[41]  Emmanuel Guigon,et al.  Computational Motor Control : Redundancy and Invariance , 2007 .

[42]  T. Vilis,et al.  Geometric relations of eye position and velocity vectors during saccades , 1990, Vision Research.

[43]  John M. Hollerbach,et al.  Dynamic interactions between limb segments during planar arm movement , 1982, Biological Cybernetics.

[44]  Emanuel Todorov,et al.  From task parameters to motor synergies: A hierarchical framework for approximately optimal control of redundant manipulators , 2005 .

[45]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[46]  Bruno Siciliano,et al.  Closed-Loop Inverse Kinematics Schemes for Constrained Redundant Manipulators with Task Space Augmentation and Task Priority Strategy , 1991, Int. J. Robotics Res..

[47]  A. Hudspeth,et al.  The physics of hearing: fluid mechanics and the active process of the inner ear , 2014, Reports on progress in physics. Physical Society.

[48]  Francesco Nori,et al.  Evidence for Composite Cost Functions in Arm Movement Planning: An Inverse Optimal Control Approach , 2011, PLoS Comput. Biol..

[49]  Emanuel Todorov,et al.  Inverse Optimal Control with Linearly-Solvable MDPs , 2010, ICML.

[50]  Emmanuel Guigon,et al.  Generating human-like reaching movements with a humanoid robot: A computational approach , 2013, J. Comput. Sci..

[51]  R. Kalaba,et al.  A new perspective on constrained motion , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[52]  T Vilis,et al.  Axes of eye rotation and Listing's law during rotations of the head. , 1991, Journal of neurophysiology.

[53]  Nancy Byl,et al.  Redundancy Resolution of the Human Arm and an Upper Limb Exoskeleton , 2012, IEEE Transactions on Biomedical Engineering.

[54]  Jing Zhao,et al.  Generating human-like movements for robotic arms , 2014 .

[55]  T. Flash,et al.  Planning Movements in a Simple Redundant Task , 2002, Current Biology.

[56]  Agnes M F Wong,et al.  Listing's law: clinical significance and implications for neural control. , 2004, Survey of ophthalmology.

[57]  Joo Hyun Kim,et al.  Prediction and analysis of human motion dynamics performing various tasks , 2006 .

[58]  C. Lanczos The variational principles of mechanics , 1949 .