An architecture for component-based design of representative-based clustering algorithms
暂无分享,去创建一个
Kathrin Kirchner | Milos Jovanovic | Boris Delibasic | Milan Vukicevic | Milija Suknovic | Johannes Ruhland | Boris Delibasic | Milija Suknovic | M. Jovanović | M. Vukicevic | Kathrin Kirchner | Johannes Ruhland
[1] Mihai Lazarescu,et al. Incremental clustering of dynamic data streams using connectivity based representative points , 2009, Data Knowl. Eng..
[2] William B. Frakes,et al. Software reuse research: status and future , 2005, IEEE Transactions on Software Engineering.
[3] Larry S. Davis,et al. Class consistent k-means: Application to face and action recognition , 2012, Comput. Vis. Image Underst..
[4] Christian Böhm,et al. Detection of Arbitrarily Oriented Synchronized Clusters in High-Dimensional Data , 2011, 2011 IEEE 11th International Conference on Data Mining.
[5] Deepak Khemani,et al. Interpretable and reconfigurable clustering of document datasets by deriving word-based rules , 2011, Knowledge and Information Systems.
[6] Remco J. Renken,et al. Group analyses of connectivity-based cortical parcellation using repeated k-means clustering , 2009, NeuroImage.
[7] Yiu-ming Cheung,et al. k*-Means: A new generalized k-means clustering algorithm , 2003, Pattern Recognit. Lett..
[8] David Sarne,et al. Sleeved co-clustering of lagged data , 2012, Knowledge and Information Systems.
[9] Zoran Obradovic,et al. A method for design of data-tailored partitioning algorithms for optimizing the number of clusters in microarray analysis , 2012, 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
[10] Lipika Dey,et al. A k-mean clustering algorithm for mixed numeric and categorical data , 2007, Data Knowl. Eng..
[11] Germain Forestier,et al. Collaborative clustering with background knowledge , 2010, Data Knowl. Eng..
[12] Kathrin Kirchner,et al. Reusable components for partitioning clustering algorithms , 2009, Artificial Intelligence Review.
[13] Pierre Hansen,et al. Analysis of Global k-Means, an Incremental Heuristic for Minimum Sum-of-Squares Clustering , 2005, J. Classif..
[14] Greg Hamerly,et al. Learning the k in k-means , 2003, NIPS.
[15] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[16] Wei Xu,et al. New fuzzy c-means clustering model based on the data weighted approach , 2010, Data Knowl. Eng..
[17] Hui Xiong,et al. Scaling up top-K cosine similarity search , 2011, Data Knowl. Eng..
[18] Zoran Obradovic,et al. Component-based decision trees for classification , 2011, Intell. Data Anal..
[19] Jian Jhen Chen,et al. K-means clustering versus validation measures: a data-distribution perspective. , 2009, IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society.
[20] Carl E. Rasmussen,et al. The Need for Open Source Software in Machine Learning , 2007, J. Mach. Learn. Res..
[21] Frank S. C. Tseng,et al. An integration of WordNet and fuzzy association rule mining for multi-label document clustering , 2010, Data Knowl. Eng..
[22] Maurice K. Wong,et al. Algorithm AS136: A k-means clustering algorithm. , 1979 .
[23] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[24] Ying Li,et al. An Improved K-Means Based Method for Fingerprint Segmentation with Sensor Interoperability , 2011 .
[25] James Bailey,et al. A hierarchical information theoretic technique for the discovery of non linear alternative clusterings , 2010, KDD.
[26] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[27] Ian Witten,et al. Data Mining , 2000 .
[28] Kathrin Kirchner,et al. A Pattern Based Data Mining Approach , 2007, GfKl.
[29] G. W. Milligan,et al. An examination of the effect of six types of error perturbation on fifteen clustering algorithms , 1980 .
[30] Elena Baralis,et al. Measuring gene similarity by means of the classification distance , 2011, Knowledge and Information Systems.
[31] Adil M. Bagirov,et al. Modified global k-means algorithm for minimum sum-of-squares clustering problems , 2008, Pattern Recognit..
[32] Peter J. Rousseeuw,et al. Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .
[33] Alfredo Cuzzocrea. Advanced knowledge-based systems , 2010, Data Knowl. Eng..
[34] Mothd Belal Al-Daoud. A New Algorithm for Cluster Initialization , 2005, WEC.
[35] Giuseppe De Pietro,et al. Formal design and implementation of constraints in software components , 2010, Adv. Eng. Softw..
[36] David H. Wolpert,et al. The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.
[37] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[38] Madhu Yedla,et al. Enhancing K-means Clustering Algorithm with Improved Initial Center , 2010 .
[39] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[40] Ranjan Maitra. Initializing Partition-Optimization Algorithms , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[41] George Karypis,et al. CLUTO - A Clustering Toolkit , 2002 .
[42] Benjamin Moseley,et al. Fast clustering using MapReduce , 2011, KDD.
[43] Yoshua Bengio,et al. Convergence Properties of the K-Means Algorithms , 1994, NIPS.
[44] Douglas Steinley,et al. Local optima in K-means clustering: what you don't know may hurt you. , 2003, Psychological methods.
[45] Yvan Saeys,et al. Java-ML: A Machine Learning Library , 2009, J. Mach. Learn. Res..
[46] V. Saravanan,et al. An Increased Performance of Clustering High Dimensional Data Using Principal Component Analysis , 2010, 2010 First International Conference on Integrated Intelligent Computing.
[47] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function , 1963 .
[48] Raja Chiky,et al. A clustering approach for sampling data streams in sensor networks , 2012, 2010 IEEE International Conference on Data Mining.
[49] Daniel A. Keim,et al. On Knowledge Discovery and Data Mining , 1997 .
[50] Jian Liu,et al. Comparative Analysis for k-Means Algorithms in Network Community Detection , 2010, ISICA.
[51] Lipika Dey,et al. A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets , 2011, Pattern Recognit. Lett..
[52] Christos Bouras,et al. W-kmeans: Clustering News Articles Using WordNet , 2010, KES.
[53] Mehmet Fatih Amasyali,et al. Clustering Application Benchmark , 2006, 2006 IEEE International Symposium on Workload Characterization.
[54] Philip S. Yu,et al. Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.
[55] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .
[56] Blaz Zupan,et al. Orange: From Experimental Machine Learning to Interactive Data Mining , 2004, PKDD.
[57] Sanjay Ranka,et al. An effic ient k-means clustering algorithm , 1997 .
[58] Rui Xu,et al. Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.
[59] Vladimir Estivill-Castro,et al. Why so many clustering algorithms: a position paper , 2002, SKDD.
[60] Nikos A. Vlassis,et al. The global k-means clustering algorithm , 2003, Pattern Recognit..
[61] Kate Smith-Miles,et al. Towards insightful algorithm selection for optimisation using meta-learning concepts , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).
[62] Byron Dom,et al. An Information-Theoretic External Cluster-Validity Measure , 2002, UAI.
[63] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[64] Elke Achtert,et al. ELKI: A Software System for Evaluation of Subspace Clustering Algorithms , 2008, SSDBM.
[65] Paul S. Bradley,et al. Refining Initial Points for K-Means Clustering , 1998, ICML.
[66] Thorsten Meinl,et al. KNIME: The Konstanz Information Miner , 2007, GfKl.
[67] Ingo Mierswa,et al. YALE: rapid prototyping for complex data mining tasks , 2006, KDD '06.
[68] Dusan Starcevic,et al. Wiki as a corporate learning tool: case study for software development company , 2012, Behav. Inf. Technol..
[69] G. W. Milligan,et al. Methodology Review: Clustering Methods , 1987 .
[70] George Karypis,et al. A Comparison of Document Clustering Techniques , 2000 .
[71] Boris Mirkin,et al. Clustering For Data Mining: A Data Recovery Approach (Chapman & Hall/Crc Computer Science) , 2005 .
[72] Cong Wang,et al. Web user clustering and Web prefetching using Random Indexing with weight functions , 2011, Knowledge and Information Systems.
[73] Kalman J. Cohen,et al. Inter-Temporal Portfolio Analysis Based on Simulation of Joint Returns , 1967 .
[74] Jim Z. C. Lai,et al. Fast global k-means clustering using cluster membership and inequality , 2010, Pattern Recognit..
[75] Estivill-CastroVladimir. Why so many clustering algorithms , 2002 .
[76] Chris H. Q. Ding,et al. K-means clustering via principal component analysis , 2004, ICML.
[77] Amit Kumar,et al. Linear-time approximation schemes for clustering problems in any dimensions , 2010, JACM.
[78] Yi Pan,et al. Using Hybrid Hierarchical K-means (HHK) clustering algorithm for protein sequence motif Super-Rule-Tree (SRT) structure construction , 2010, Int. J. Data Min. Bioinform..
[79] Ossama Younis,et al. FlowMate: scalable on-line flow clustering , 2005, IEEE/ACM Transactions on Networking.
[80] Hassan Abolhassani,et al. Harmony K-means algorithm for document clustering , 2009, Data Mining and Knowledge Discovery.
[81] Gerardo Beni,et al. A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[82] Argyris Kalogeratos,et al. Document clustering using synthetic cluster prototypes , 2011, Data Knowl. Eng..
[83] Katharina Morik,et al. Automatic Feature Extraction for Classifying Audio Data , 2005, Machine Learning.
[84] K. alik. An efficient k'-means clustering algorithm , 2008 .
[85] Chris H. Q. Ding,et al. A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.
[86] Tijl De Bie,et al. An information theoretic framework for data mining , 2011, KDD.
[87] Marc Teboulle,et al. Grouping Multidimensional Data - Recent Advances in Clustering , 2006 .
[88] Andrew W. Moore,et al. X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.
[89] Alexander Schliep,et al. Ranking and selecting clustering algorithms using a meta-learning approach , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).
[90] Anil K. Jain. Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..
[91] Zoran Obradovic,et al. Internal Evaluation Measures as Proxies for External Indices in Clustering Gene Expression Data , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.
[92] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[93] Ivan G. Costa,et al. Mining Rules for the Automatic Selection Process of Clustering Methods Applied to Cancer Gene Expression Data , 2009, ICANN.
[94] Will Tracz. Where does reuse start? , 1990, SOEN.