Inapproximability Results for Approximate Nash Equilibria

We study the problem of finding approximate Nash equilibria that satisfy certain conditions, such as providing good social welfare. In particular, we study the problem $$\epsilon $$∈-NE $$\delta $$i¾?-SW: find an $$\epsilon $$∈-approximate Nash equilibrium $$\epsilon $$∈-NE that is within $$\delta $$i¾? of the best social welfare achievable by an $$\epsilon $$∈-NE. Our main result is that, if the randomized exponential-time hypothesis RETH is true, then solving $$\left \frac{1}{8} - \mathrm {O}\delta \right $$18-Oi¾?-NE $$\mathrm {O}\delta $$Oi¾?-SW for an $$n\times n$$n×n bimatrix game requires $$n^{\mathrm {\widetilde{\Omega }}\delta ^{\varLambda } \log n}$$nΩ~i¾?i¾?logn time, where $$\varLambda $$i¾? is a constant. Building on this result, we show similar conditional running time lower bounds on a number of decision problems for approximate Nash equilibria that do not involve social welfare, including maximizing or minimizing a certain player's payoff, or finding approximate equilibria contained in a given pair of supports. We show quasi-polynomial lower bounds for these problems assuming that RETH holds, and these lower bounds apply to $$\epsilon $$∈-Nash equilibria for all $$\epsilon < \frac{1}{8}$$∈<18. The hardness of these other decision problems has so far only been studied in the context of exact equilibria.

[1]  John Fearnley,et al.  Distributed Methods for Computing Approximate Equilibria , 2015, Algorithmica.

[2]  Ran Raz,et al.  Two Query PCP with Sub-Constant Error , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[3]  Mark Braverman,et al.  Inapproximability of NP-Complete Variants of Nash Equilibrium , 2011, Theory Comput..

[4]  Amin Saberi,et al.  Approximating nash equilibria using small-support strategies , 2007, EC '07.

[5]  Russell Impagliazzo,et al.  AM with Multiple Merlins , 2014, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[6]  Aranyak Mehta,et al.  Playing large games using simple strategies , 2003, EC '03.

[7]  Eric van Damme,et al.  Non-Cooperative Games , 2000 .

[8]  Aranyak Mehta,et al.  A note on approximate Nash equilibria , 2006, Theor. Comput. Sci..

[9]  Vittorio Bilò,et al.  A Catalog of ∃ R-Complete Decision Problems About Nash Equilibria in Multi-Player Games , 2016 .

[10]  Ruta Mehta,et al.  ETR-Completeness for Decision Versions of Multi-player (Symmetric) Nash Equilibria , 2015, ICALP.

[11]  Artur Czumaj,et al.  Approximate Nash Equilibria with Near Optimal Social Welfare , 2015, IJCAI.

[12]  Evangelos Markakis,et al.  New algorithms for approximate Nash equilibria in bimatrix games , 2010, Theor. Comput. Sci..

[13]  Mark Braverman,et al.  Approximating the best Nash Equilibrium in no(log n)-time breaks the Exponential Time Hypothesis , 2015, Electron. Colloquium Comput. Complex..

[14]  Robert Krauthgamer,et al.  How hard is it to approximate the best Nash equilibrium? , 2009, SODA.

[15]  Vittorio Bilò,et al.  Existential-R-Complete Decision Problems about Symmetric Nash Equilibria in Symmetric Multi-Player Games , 2017, STACS.

[16]  Troels Bjerre Lund,et al.  Approximate Well-supported Nash Equilibria Below Two-thirds , 2015, Algorithmica.

[17]  Artur Czumaj,et al.  Approximate Plutocratic and Egalitarian Nash Equilibria: (Extended Abstract) , 2016, AAMAS.

[18]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[19]  Aviad Rubinstein,et al.  Settling the Complexity of Computing Approximate Two-Player Nash Equilibria , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Paul G. Spirakis,et al.  An Optimization Approach for Approximate Nash Equilibria , 2007, WINE.

[21]  Paul G. Spirakis,et al.  Well Supported Approximate Equilibria in Bimatrix Games , 2010, Algorithmica.

[22]  Yakov Babichenko,et al.  Can Almost Everybody be Almost Happy? , 2015, ITCS.

[23]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[24]  Troels Bjerre Lund,et al.  Approximate Well-Supported Nash Equilibria Below Two-Thirds , 2012, SAGT.

[25]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[26]  Vittorio Bilò,et al.  A Catalog of EXISTS-R-Complete Decision Problems About Nash Equilibria in Multi-Player Games , 2016, STACS.

[27]  Vincent Conitzer,et al.  New complexity results about Nash equilibria , 2008, Games Econ. Behav..

[28]  Aranyak Mehta,et al.  Progress in approximate nash equilibria , 2007, EC '07.