A novel assembly pipeline and functional annotations for targeted sequencing: A case study on the globally threatened Margaritiferidae (Bivalvia: Unionida)

The proliferation of genomic sequencing approaches has significantly impacted the field of phylogenetics. Target capture approaches provide a cost‐effective, fast and easily applied strategy for phylogenetic inference of non‐model organisms. However, several existing target capture processing pipelines are incapable of incorporating whole genome sequencing (WGS). Here, we develop a new pipeline for capture and de novo assembly of the targeted regions using whole genome re‐sequencing reads. This new pipeline captured targeted loci accurately, and given its unbiased nature, can be used with any target capture probe set. Moreover, due to its low computational demand, this new pipeline may be ideal for users with limited resources and when high‐coverage sequencing outputs are required. We demonstrate the utility of our approach by incorporating WGS data into the first comprehensive phylogenomic reconstruction of the freshwater mussel family Margaritiferidae. We also provide a catalogue of well‐curated functional annotations of these previously uncharacterized freshwater mussel‐specific target regions, representing a complementary tool for scrutinizing phylogenetic inferences while expanding future applications of the probe set.

[1]  Bin Ye,et al.  Resolving species-level diversity of Beringiana and Sinanodonta mussels (Bivalvia: Unionidae) in the Japanese archipelago using genome-wide data. , 2022, Molecular phylogenetics and evolution.

[2]  O. Silva-Junior,et al.  Comparative population genomics in Tabebuia alliance shows evidence of adaptation in Neotropical tree species , 2022, Heredity.

[3]  Hans H. Cheng,et al.  Darwinian genomics and diversity in the tree of life , 2022, Proceedings of the National Academy of Sciences.

[4]  A. Antonelli,et al.  A bioinformatic platform to integrate target capture and whole genome sequences of various read depths for phylogenomics , 2021, Molecular ecology.

[5]  Jordan D. Satler,et al.  A phylogenomic perspective on the evolutionary history of the stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by ultraconserved genomic elements. , 2021, Molecular phylogenetics and evolution.

[6]  Joanna L. Kelley,et al.  Toward a genome sequence for every animal: Where are we now? , 2021, Proceedings of the National Academy of Sciences.

[7]  Caleb D. McMahan,et al.  Comparing Ultraconserved Elements and Exons for Phylogenomic Analyses of Middle American Cichlids: When Data Agree to Disagree , 2021, Genome biology and evolution.

[8]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[9]  Zhengli Wu,et al.  Histopathology, antioxidant responses, transcriptome and gene expression analysis in triangle sail mussel Hyriopsis cumingii after bacterial infection. , 2021, Developmental and comparative immunology.

[10]  F. Köhler,et al.  Major shortfalls impairing knowledge and conservation of freshwater molluscs , 2021, Hydrobiologia.

[11]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[12]  L. Page,et al.  Taxonomic revision of a radiation of South-east Asian freshwater mussels (Unionidae : Gonideinae : Contradentini+Rectidentini) , 2021, Invertebrate Systematics.

[13]  K. Arakawa,et al.  Systematics of tardigrada: A reanalysis of tardigrade taxonomy with specific reference to Guil et al. (2019) , 2021 .

[14]  J. Boore,et al.  Molluscan mitochondrial genomes break the rules , 2021, Philosophical Transactions of the Royal Society B.

[15]  Jacob L. Steenwyk,et al.  A genome-scale phylogeny of the kingdom Fungi , 2021, Current Biology.

[16]  Chase H. Smith A High-Quality Reference Genome for a Parasitic Bivalve with Doubly Uniparental Inheritance (Bivalvia: Unionida) , 2021, Genome biology and evolution.

[17]  Daniel L. Graf,et al.  A ‘big data’ approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species , 2021, Journal of Molluscan Studies.

[18]  O. Simakov,et al.  The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) , 2020, bioRxiv.

[19]  Matthew W. Hahn,et al.  New Approaches for Inferring Phylogenies in the Presence of Paralogs. , 2020, Trends in genetics : TIG.

[20]  E. Kern,et al.  The Mitochondrial Genome in Nematode Phylogenetics , 2020, Frontiers in Ecology and Evolution.

[21]  J. Garner,et al.  Gene family amplification facilitates adaptation in freshwater unionid bivalve Megalonaias nervosa , 2020, Molecular ecology.

[22]  Nathan A. Johnson,et al.  Comparative phylogenomics reveal complex evolution of life history strategies in a clade of bivalves with parasitic larvae (Bivalvia: Unionoida: Ambleminae) , 2020, Cladistics : the international journal of the Willi Hennig Society.

[23]  G. B. Golding,et al.  The role of introgression and ecotypic parallelism in delineating intraspecific conservation units , 2020, Molecular ecology.

[24]  Ziheng Yang,et al.  Phylogenetic tree building in the genomic age , 2020, Nature Reviews Genetics.

[25]  Alexander Knyshov,et al.  New alignment-based sequence extraction software (ALiBaSeq) and its utility for deep level phylogenetics , 2020, bioRxiv.

[26]  J. Werren,et al.  Conflicting signal in transcriptomic markers leads to a poorly resolved backbone phylogeny of chalcidoid wasps , 2020 .

[27]  Y. Peer,et al.  Novel phylogeny of angiosperms inferred from whole-genome microsynteny analysis , 2020, bioRxiv.

[28]  D. Guerra,et al.  Variability of mitochondrial ORFans hints at possible differences in the system of doubly uniparental inheritance of mitochondria among families of freshwater mussels (Bivalvia: Unionida) , 2019, BMC Evolutionary Biology.

[29]  L. Castro,et al.  Molluscan genomics: the road so far and the way forward , 2019, Hydrobiologia.

[30]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[31]  J. Bongaarts IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services , 2019, Population and Development Review.

[32]  L. Page,et al.  Unioverse: A phylogenomic resource for reconstructing the evolution of freshwater mussels (Bivalvia, Unionoida). , 2019, Molecular phylogenetics and evolution.

[33]  Jiale Li,et al.  The Mantle Exosome and MicroRNAs of Hyriopsis cumingii Involved in Nacre Color Formation , 2019, Marine Biotechnology.

[34]  Volker P. Brendel,et al.  SRAssembler: Selective Recursive local Assembly of homologous genomic regions , 2019, BMC Bioinformatics.

[35]  Jiale Li,et al.  Integrated transcriptome analysis of immunological responses in the pearl sac of the triangle sail mussel (Hyriopsis cumingii) after mantle implantation. , 2019, Fish & shellfish immunology.

[36]  S. Varandas,et al.  Mesozoic mitogenome rearrangements and freshwater mussel (Bivalvia: Unionoidea) macroevolution , 2019, Heredity.

[37]  J. Townsend,et al.  A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes , 2019, IMA Fungus.

[38]  C. Todt,et al.  Phylogenomics of Aplacophora (Mollusca, Aculifera) and a solenogaster without a foot , 2019, Proceedings of the Royal Society B.

[39]  Yiyuan Li,et al.  MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization , 2019, Nucleic acids research.

[40]  Xin Zhou,et al.  Phylogenomics from low‐coverage whole‐genome sequencing , 2019, Methods in Ecology and Evolution.

[41]  K. Roe,et al.  Analysis of mitochondrial genomes resolves the phylogenetic position of Chinese freshwater mussels (Bivalvia, Unionidae) , 2019, ZooKeys.

[42]  S. Varandas,et al.  The male and female complete mitochondrial genomes of the threatened freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) (Bivalvia: Margaritiferidae) , 2019, Mitochondrial DNA Part B.

[43]  Evgeny M. Zdobnov,et al.  OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs , 2018, Nucleic Acids Res..

[44]  S. Varandas,et al.  Expansion and systematics redefinition of the most threatened freshwater mussel family, the Margaritiferidae. , 2018, Molecular phylogenetics and evolution.

[45]  Brent S. Pedersen,et al.  GOATOOLS: A Python library for Gene Ontology analyses , 2018, Scientific Reports.

[46]  W. Hoeh,et al.  Evaluating the utility of the female-specific mitochondrial f-orf gene for population genetic, phylogeographic and systematic studies in freshwater mussels (Bivalvia: Unionida) , 2018, PeerJ.

[47]  Nicolás Bellora,et al.  Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data , 2018, Proceedings of the National Academy of Sciences.

[48]  Chao Zhang,et al.  ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees , 2018, BMC Bioinformatics.

[49]  Gonzalo Giribet,et al.  Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life , 2018, Current Biology.

[50]  K. Roe,et al.  A comparison of genetic diversity and population structure of the endangered scaleshell mussel (Leptodea leptodon), the fragile papershell (Leptodea fragilis) and their host-fish the freshwater drum (Aplodinotus grunniens) , 2018, Conservation Genetics.

[51]  Fritz J Sedlazeck,et al.  Piercing the dark matter: bioinformatics of long-range sequencing and mapping , 2018, Nature Reviews Genetics.

[52]  Guang-Long Xie,et al.  Reclassification of Lamprotula rochechouartii as Margaritifera rochechouartiicomb. nov. (Bivalvia: Margaritiferidae) revealed by time-calibrated multi-locus phylogenetic analyses and mitochondrial phylogenomics of Unionoida. , 2018, Molecular phylogenetics and evolution.

[53]  W. Hoeh,et al.  Genome Survey of the Freshwater Mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) Using a Hybrid De Novo Assembly Approach , 2018, bioRxiv.

[54]  A. Machordom,et al.  Species boundaries, geographic distribution and evolutionary history of the Western Palaearctic freshwater mussels Unio (Bivalvia: Unionidae) , 2018 .

[55]  Nathan A. Johnson,et al.  Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics , 2018, Genome biology and evolution.

[56]  J. Thébault,et al.  Transcriptomic responses of the endangered freshwater mussel Margaritifera margaritifera to trace metal contamination in the Dronne River, France , 2017, Environmental Science and Pollution Research.

[57]  W. Maddison,et al.  A genome-wide phylogeny of jumping spiders (Araneae, Salticidae), using anchored hybrid enrichment , 2017, ZooKeys.

[58]  Kevin P. Johnson,et al.  Phylogenomics from Whole Genome Sequences Using aTRAM , 2017, Systematic biology.

[59]  G. Giribet,et al.  A Phylogenomic Solution to the Origin of Insects by Resolving Crustacean-Hexapod Relationships , 2017, Current Biology.

[60]  W. Hoeh,et al.  Evolution of sex-dependent mtDNA transmission in freshwater mussels (Bivalvia: Unionida) , 2017, Scientific Reports.

[61]  S. Varandas,et al.  The first Margaritiferidae male (M-type) mitogenome: mitochondrial gene order as a potential character for determining higher-order phylogeny within Unionida (Bivalvia) , 2017 .

[62]  A. Machordom,et al.  The origin and phylogeny of Margaritiferidae (Bivalvia, Unionoida): a synthesis of molecular and fossil data , 2017 .

[63]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[64]  Yanjie Zhang,et al.  Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes , 2017, Nature Ecology &Evolution.

[65]  V. Simić,et al.  Conservation status of freshwater mussels in Europe: state of the art and future challenges , 2017, Biological reviews of the Cambridge Philosophical Society.

[66]  G. Giribet,et al.  A family-level Tree of Life for bivalves based on a Sanger-sequencing approach. , 2017, Molecular phylogenetics and evolution.

[67]  Mark P. Simmons,et al.  Anchored Phylogenomics of Angiosperms I: Assessing the Robustness of Phylogenetic Estimates , 2016, bioRxiv.

[68]  Patrick Mardulyn,et al.  NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.

[69]  I. Bolotov,et al.  Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida). , 2016, Molecular phylogenetics and evolution.

[70]  Antonis Rokas,et al.  Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data , 2016, G3: Genes, Genomes, Genetics.

[71]  S. Varandas,et al.  The male and female complete mitochondrial genome sequences of the Endangered freshwater mussel Potomida littoralis (Cuvier, 1798) (Bivalvia: Unionidae) , 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[72]  M. Reemer,et al.  Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae) , 2016, BMC Evolutionary Biology.

[73]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[74]  R. DeSalle,et al.  Insect genome content phylogeny and functional annotation of core insect genomes. , 2016, Molecular phylogenetics and evolution.

[75]  Travis C Glenn,et al.  Avoiding Missing Data Biases in Phylogenomic Inference: An Empirical Study in the Landfowl (Aves: Galliformes). , 2016, Molecular biology and evolution.

[76]  Brant C. Faircloth,et al.  PHYLUCE is a software package for the analysis of conserved genomic loci , 2015, bioRxiv.

[77]  Xiaofeng Liu,et al.  The complete mitochondrial genome sequence of Margaritiana dahurica Middendorff , 2015, Mitochondrial DNA.

[78]  G. Giribet,et al.  A phylogenetic backbone for Bivalvia: an RNA-seq approach , 2015, Proceedings of the Royal Society B: Biological Sciences.

[79]  Xiuzhen Huang,et al.  Bridger: a new framework for de novo transcriptome assembly using RNA-seq data , 2015, Genome Biology.

[80]  P. Kück,et al.  FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies , 2014, Frontiers in Zoology.

[81]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[82]  Helmut Krcmar,et al.  Big Data , 2014, Wirtschaftsinf..

[83]  Anders Larsson,et al.  AliView: a fast and lightweight alignment viewer and editor for large datasets , 2014, Bioinform..

[84]  R. Lanfear,et al.  Selecting optimal partitioning schemes for phylogenomic datasets , 2014, BMC Evolutionary Biology.

[85]  Deren A. R. Eaton,et al.  A Framework Phylogeny of the American Oak Clade Based on Sequenced RAD Data , 2014, PloS one.

[86]  A. Lemmon,et al.  High-Throughput Genomic Data in Systematics and Phylogenetics , 2013 .

[87]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[88]  P. Stadler,et al.  Genetic aspects of mitochondrial genome evolution. , 2013, Molecular phylogenetics and evolution.

[89]  K. Inoue,et al.  Phylogeographic and population genetic analyses reveal Pleistocene isolation followed by high gene flow in a wide ranging, but endangered, freshwater mussel , 2013, Heredity.

[90]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[91]  David W. Cheung,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[92]  A. Lemmon,et al.  Anchored hybrid enrichment for massively high-throughput phylogenomics. , 2012, Systematic biology.

[93]  Travis C Glenn,et al.  Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. , 2012, Systematic biology.

[94]  Anthony J. Geneva,et al.  Molecular phylogenetic analysis of tropical freshwater mussels (Mollusca: Bivalvia: Unionoida) resolves the position of Coelatura and supports a monophyletic Unionidae. , 2011, Molecular phylogenetics and evolution.

[95]  E. Chapman,et al.  Novel protein genes in animal mtDNA: a new sex determination system in freshwater mussels (Bivalvia: Unionoida)? , 2011, Molecular biology and evolution.

[96]  Tal Pupko,et al.  GUIDANCE: a web server for assessing alignment confidence scores , 2010, Nucleic Acids Res..

[97]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[98]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[99]  Raymond Tellier,et al.  The Complete Sequence of a Human Parainfluenzavirus 4 Genome , 2009, Viruses.

[100]  A. Machordom,et al.  Margaritifera marocana (Pallary, 1918): a valid species inhabiting Moroccan rivers , 2009 .

[101]  S. Nichols,et al.  Community and foodweb ecology of freshwater mussels , 2008, Journal of the North American Benthological Society.

[102]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[103]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[104]  J. Vermunt,et al.  Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes , 2007, PloS one.

[105]  F. Jiggins,et al.  Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts , 2005, Proceedings of the Royal Society B: Biological Sciences.

[106]  G. Giribet,et al.  INVESTIGATIONS INTO THE PHYLOGENETIC RELATIONSHIPS OF FRESHWATER PEARL MUSSELS (BIVALVIA: MARGARITIFERIDAE) BASED ON MOLECULAR DATA: IMPLICATIONS FOR THEIR TAXONOMY AND BIOGEOGRAPHY , 2004 .

[107]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[108]  E. Monroe,et al.  Nonlethal Evaluation of the Physiological Health of Unionid Mussels: Methods for Biopsy and Glycogen Analysis , 1998, Journal of the North American Benthological Society.

[109]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[110]  Nicole L. Garrison,et al.  Prodigious polyphyly in Pleuroceridae (Gastropoda: Cerithioidea) , 2022 .

[111]  Xiao-Chen Huang,et al.  Towards a global phylogeny of freshwater mussels (Bivalvia: Unionida): Species delimitation of Chinese taxa, mitochondrial phylogenomics, and diversification patterns. , 2019, Molecular phylogenetics and evolution.

[112]  A. Lemmon,et al.  Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics , 2018, Systematic biology.

[113]  D. Torti,et al.  Exon-based phylogenomics strengthens the phylogeny of Neotropical cichlids and identifies remaining conflicting clades (Cichliformes: Cichlidae: Cichlinae) , 2017, bioRxiv.

[114]  O. Paulo,et al.  Phylogeny of the most species-rich freshwater bivalve family (Bivalvia: Unionida: Unionidae): Defining modern subfamilies and tribes. , 2017, Molecular phylogenetics and evolution.

[115]  Scott V Edwards,et al.  Implementing and testing the multispecies coalescent model: A valuable paradigm for phylogenomics. , 2016, Molecular phylogenetics and evolution.

[116]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010 .

[117]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.