Gramian-Based Model Reduction for Data-Sparse Systems

Model order reduction (MOR) is common in simulation, control and optimization of complex dynamical systems arising in modeling of physical processes, and in the spatial discretization of parabolic partial differential equations in two or more dimensions. Typically, after a semi-discretization of the differential operator by the finite or boundary element method, we have a large state-space dimension n. In order to accelerate the simulation time or to facilitate the control design, it is often desirable to employ an approximate reduced-order system of order r, with r n, instead of the original large-scale system. We show how to compute a reduced-order system with a balancing-related model reduction method. The method is based on the computation of the cross-Gramian X , which is the solution of a Sylvester equation. As standard algorithms for the solution of Sylvester equations are of limited use for large-scale (possibly dense) systems, we investigate approaches based on the iterative sign function method, using data-sparse matrix approximations (the hierarchical matrix format) and an approximate arithmetic. Furthermore, we use a modified iteration scheme for computing low-rank factors of the solution X . The projection matrices for MOR are computed from the dominant invariant subspace of X . We propose an efficient algorithm for the direct calculation of these projectors from the low-rank factors of X . Numerical experiments demonstrate the performance of the new approach.

[1]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[2]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[3]  William S. Levine,et al.  The Control Handbook , 2005 .

[4]  P. Benner FACTORIZED SOLUTION OF SYLVESTER EQUATIONS WITH APPLICATIONS IN CONTROL , 2004 .

[5]  I. Postlethwaite,et al.  Truncated balanced realization of a stable non-minimal state-space system , 1987 .

[6]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[7]  Boris N. Khoromskij,et al.  Solution of Large Scale Algebraic Matrix Riccati Equations by Use of Hierarchical Matrices , 2003, Computing.

[8]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[9]  B. Anderson,et al.  Controller reduction via stable factorization and balancing , 1986 .

[10]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[11]  Enrique S. Quintana-Ortí,et al.  Efficient Solution of Coupled Lyapunov Equations via Matrix Sign Function Iteration , 1998 .

[12]  L.M. Silveira,et al.  Generating compact, guaranteed passive reduced-order models of 3-D RLC interconnects , 2004, IEEE Transactions on Advanced Packaging.

[13]  Steffen Börm,et al.  Hybrid cross approximation of integral operators , 2005, Numerische Mathematik.

[14]  P. V. Doorenb,et al.  Sylvester equations and projection-based model reduction , 2003 .

[15]  Danny C. Sorensen,et al.  The Sylvester equation and approximate balanced reduction , 2002 .

[16]  Serkan Gugercin,et al.  Smith-Type Methods for Balanced Truncation of Large Sparse Systems , 2005 .

[17]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[18]  Enrique S. Quintana-Ortí,et al.  Solving Stable Sylvester Equations via Rational Iterative Schemes , 2006, J. Sci. Comput..

[19]  A. Laub,et al.  A note on cross-Grammians for symmetric realizations , 1983, Proceedings of the IEEE.

[20]  Enrique S. Quintana-Ortí,et al.  Solving Stable Stein Equations on Distributed Memory Computers , 1999, Euro-Par.

[21]  Harald K. Wimmer,et al.  On the algebraic Riccati equation , 1976, Bulletin of the Australian Mathematical Society.

[22]  H. Nicholson,et al.  On the structure of balanced and other principal representations of SISO systems , 1983 .

[23]  Peter Benner,et al.  Factorized Solution of Lyapunov Equations Based on Hierarchical Matrix Arithmetic , 2006, Computing.

[24]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[25]  Lars Grasedyck,et al.  Theorie und Anwendungen Hierarchischer Matrizen , 2006 .

[26]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[27]  Lars Grasedyck,et al.  Existence of a low rank or ℋ︁‐matrix approximant to the solution of a Sylvester equation , 2004, Numer. Linear Algebra Appl..

[28]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[29]  V. Sokolov Contributions to the Minimal Realization Problem for Descriptor Systems , 2006 .

[30]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[31]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[32]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[33]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[34]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[35]  Daniel Kressner,et al.  Numerical Methods for General and Structured Eigenvalue Problems , 2005, Lecture Notes in Computational Science and Engineering.

[36]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[37]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[38]  Y. Zhou,et al.  On the decay rate of Hankel singular values and related issues , 2002, Syst. Control. Lett..

[39]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[40]  Enrique S. Quintana-Ortí,et al.  NUMERICAL SOLUTION OF DISCRETE STABLE LINEAR MATRIX EQUATIONS ON MULTICOMPUTERS , 2002, Parallel Algorithms Appl..

[41]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[42]  Ulrike Baur,et al.  Low rank solution of data‐sparse Sylvester equations , 2008, Numer. Linear Algebra Appl..

[43]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[45]  V. A. Barker,et al.  Finite element solution of boundary value problems , 1984 .

[46]  BennerPeter,et al.  Gramian-Based Model Reduction for Data-Sparse Systems , 2008 .

[47]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[48]  Enrique S. Quintana-Ortí,et al.  Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers , 2000 .

[49]  Gene H. Golub,et al.  Matrix computations , 1983 .

[50]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[51]  Christian H. Bischof,et al.  Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.

[52]  B. Anderson,et al.  Model reduction for control system design , 1984 .

[53]  Enrique S. Quintana-Ortí,et al.  Model Reduction Based on Spectral Projection Methods , 2005 .

[54]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[55]  Martin Costabel,et al.  Developments in Boundary Element Methods for Time-Dependent Problems , 1994 .

[56]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[57]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[58]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[59]  Danny C. Sorensen,et al.  A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations , 2004, Numerical Algorithms.

[60]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[61]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[62]  Jacob K. White,et al.  Low Rank Solution of Lyapunov Equations , 2002, SIAM J. Matrix Anal. Appl..

[63]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[64]  V. Hutson Integral Equations , 1967, Nature.

[65]  H. Nicholson,et al.  On a fundamental property of the cross- Gramian matrix , 1984 .

[66]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[67]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[68]  P. Benner,et al.  Parallel algorithms for model reduction of discrete-time systems , 2003, Int. J. Syst. Sci..

[69]  R. Aldhaheri Model order reduction via real Schur-form decomposition , 1991 .

[70]  Jeng-Tzong Chen,et al.  A Practical Guide to Boundary Element Methods with the Software Library BEMLIB , 2002 .