Summarizing and Exploring Tabular Data in Conversational Search
暂无分享,去创建一个
[1] Philip S. Yu,et al. TabSum: a flexible and dynamic table summarization approach , 2000, Proceedings 20th IEEE International Conference on Distributed Computing Systems.
[2] K. Selçuk Candan,et al. AlphaSum: size-constrained table summarization using value lattices , 2009, EDBT '09.
[3] Maguelonne Teisseire,et al. Knowledge-Free Table Summarization , 2013, DaWaK.
[4] Christos Faloutsos,et al. TSum: fast, principled table summarization , 2013, ADKDD '13.
[5] Percy Liang,et al. Compositional Semantic Parsing on Semi-Structured Tables , 2015, ACL.
[6] Hang Li,et al. “ Tony ” DNN Embedding for “ Tony ” Selective Read for “ Tony ” ( a ) Attention-based Encoder-Decoder ( RNNSearch ) ( c ) State Update s 4 SourceVocabulary Softmax Prob , 2016 .
[7] Lukasz Kaiser,et al. Attention is All you Need , 2017, NIPS.
[8] Mitesh M. Khapra,et al. A Mixed Hierarchical Attention Based Encoder-Decoder Approach for Standard Table Summarization , 2018, NAACL.
[9] Luke S. Zettlemoyer,et al. AllenNLP: A Deep Semantic Natural Language Processing Platform , 2018, ArXiv.
[10] Cong Yu,et al. Generating Titles for Web Tables , 2018, WWW.
[11] R'emi Louf,et al. HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.
[12] Ilya Sutskever,et al. Language Models are Unsupervised Multitask Learners , 2019 .
[13] Krisztian Balog,et al. Web Table Extraction, Retrieval, and Augmentation: A Survey , 2020, ACM Trans. Intell. Syst. Technol..
[14] Colin Raffel,et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer , 2019, J. Mach. Learn. Res..
[15] Lysandre Debut,et al. HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.