PI/PID controller stabilizing sets of uncertain nonlinear systems: an efficient surrogate model-based approach

Closed forms of stabilizing sets are generally only available for linearized systems. An innovative numerical strategy to estimate stabilizing sets of PI or PID controllers tackling (uncertain) nonlinear systems is proposed. The stability of the closed-loop system is characterized by the sign of the largest Lyapunov exponent (LLE). In this framework, the bottleneck is the computational cost associated with the solution of the system, particularly including uncertainties. To overcome this issue, an adaptive surrogate algorithm, the Monte Carlo intersite Voronoi (MiVor) scheme, is adopted to pertinently explore the domain of the controller parameters and classify it into stable/unstable regions from a low number of nonlinear estimations. The result of the random analysis is a stochastic set providing probability information regarding the capabilities of PI or PID controllers to stabilize the nonlinear system and the risk of instabilities. The minimum of the LLE is proposed as tuning rule of the controller parameters. It is expected that using a tuning rule like this results in PID controllers producing the highest closed-loop convergence rate, thus being robust against model parametric uncertainties and capable of avoiding large fluctuating behavior. The capabilities of the innovative approach are demonstrated by estimating robust stabilizing sets for the blood glucose regulation problem in type 1 diabetes patients.

[1]  Patricio Colmegna,et al.  Invalidation and low-order model set for artificial pancreas robust control design , 2019, Journal of Process Control.

[2]  Tore Hägglund,et al.  The one-third rule for PI controller tuning , 2019, Comput. Chem. Eng..

[3]  Shankar P. Bhattacharyya,et al.  Structure and synthesis of PID controllers , 2000 .

[4]  Jan N. Fuhg,et al.  A classification-pursuing adaptive approach for Gaussian process regression on unlabeled data , 2022 .

[5]  S. Bhattacharyya,et al.  PID controller design with an H∞ criterion , 2018 .

[6]  Sergio Romero-Vivo,et al.  On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach , 2012, Comput. Methods Programs Biomed..

[7]  G. P. Rangaiah,et al.  Review and Analysis of Blood Glucose (BG) Models for Type 1 Diabetic Patients , 2011 .

[8]  Fernando Morilla,et al.  PID CONTROL DESIGN WITH GUARANTEED STABILITY , 2006 .

[9]  Jan N. Fuhg,et al.  State-of-the-Art and Comparative Review of Adaptive Sampling Methods for Kriging , 2020, Archives of Computational Methods in Engineering.

[10]  Lorenzo Marconi,et al.  Robust Nonlinear Regulation: Continuous-Time Internal Models and Hybrid Identifiers , 2014, IEEE Transactions on Automatic Control.

[11]  Huang,et al.  Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem , 2000, ISA transactions.

[12]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[13]  Nicholas Stergiou,et al.  Sensitivity of the Wolf’s and Rosenstein’s Algorithms to Evaluate Local Dynamic Stability from Small Gait Data Sets , 2011, Annals of Biomedical Engineering.

[14]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[15]  J. Danesh,et al.  Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. , 2010, Lancet.

[16]  Ian R. Petersen,et al.  Robust control of uncertain systems: Classical results and recent developments , 2014, Autom..

[17]  Sangjin Han,et al.  PID Controller Synthesis Using a $\sigma$ -Hurwitz Stability Criterion , 2018, IEEE Control Systems Letters.

[18]  J. Moreno Asymptotic tracking and disturbance rejection of time-varying signals with a discontinuous PID controller , 2020 .

[19]  B. R. Barmish,et al.  Extreme Point Results for Robust Stabilization of Interval Plants with First Order Compensators , 1990, 1990 American Control Conference.

[20]  M. Chiu,et al.  Adaptive PID Controller Design for Nonlinear Systems , 2009 .

[21]  T. McAvoy,et al.  Use of Hybrid Models in Wastewater Systems , 2000 .

[22]  A. Wolf,et al.  13. Quantifying chaos with Lyapunov exponents , 1986 .

[23]  Benoît Chachuat,et al.  Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control , 2014, J. Optim. Theory Appl..

[24]  Roberto Tempo,et al.  Applications of Randomized Algorithms , 2013 .

[25]  Y.B. Shtessel,et al.  Blood glucose regulation in diabetics using sliding mode control techniques , 2006, 2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory.

[26]  Ramon Vilanova,et al.  Robustness in PID Control , 2012 .

[27]  Victor M. Zavala,et al.  Optimal PID Controller Tuning using Stochastic Programming Techniques , 2018 .

[28]  Jan N. Fuhg,et al.  Surrogate model approach for investigating the stability of a friction-induced oscillator of Duffing’s type , 2019, Nonlinear Dynamics.

[29]  G. Venter,et al.  An algorithm for fast optimal Latin hypercube design of experiments , 2010 .

[30]  A. Dabrowski,et al.  Tuning the control system of a nonlinear inverted pendulum by means of the new method of Lyapunov exponents estimation , 2018 .

[31]  Y. Z. Ider,et al.  Quantitative estimation of insulin sensitivity. , 1979, The American journal of physiology.

[33]  Roberto Tempo,et al.  Extreme point results for robust stabilization of interval plants with first-order compensators , 1992 .

[34]  Patricio Colmegna,et al.  Control-Oriented Model With Intra-Patient Variations for an Artificial Pancreas , 2020, IEEE Journal of Biomedical and Health Informatics.

[35]  Jorge-Humberto Urrea-Quintero,et al.  Towards a controllability analysis of multiscale systems: Application of the set-theoretic approach to a semi-batch emulsion polymerization process , 2020, Comput. Chem. Eng..

[36]  Shankar P. Bhattacharyya,et al.  PID Controllers for Time Delay Systems , 2004 .

[37]  C. A. Gómez-Pérez,et al.  Reference Trajectory Design Using State Controllability for Batch Processes , 2015 .

[38]  Tariq Samad,et al.  A Survey on Industry Impact and Challenges Thereof [Technical Activities] , 2017, IEEE Control Systems.

[39]  Pierre Apkarian,et al.  The H∞ Control Problem is Solved , 2017 .

[40]  Shankar P. Bhattacharyya,et al.  Overview of Control Systems , 2000 .

[41]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[42]  Lei Guo,et al.  Theory and Design of PID Controller for Nonlinear Uncertain Systems , 2019, IEEE Control Systems Letters.

[43]  Graham C. Goodwin,et al.  A systematic stochastic design strategy achieving an optimal tradeoff between peak BGL and probability of hypoglycaemic events for individuals having type 1 diabetes mellitus , 2020, Biomed. Signal Process. Control..

[44]  Dipankar Deb,et al.  Blood glucose regulation in type 1 diabetic patients: an adaptive parametric compensation control‐based approach , 2018, IET systems biology.

[45]  Marek Balcerzak,et al.  Improving efficiency of the largest Lyapunov exponent’s estimation by its determination from the vector field properties , 2020, Nonlinear Dynamics.

[46]  Lei Guo,et al.  Control of Nonlinear Uncertain Systems by Extended PID , 2021, IEEE Transactions on Automatic Control.

[47]  Lei Guo,et al.  Extended PID Control of Nonlinear Uncertain Systems , 2019, 1901.00973.

[48]  Tao Liu,et al.  A tutorial review on process identification from step or relay feedback test , 2013 .

[49]  Frank Allgöwer,et al.  Dual-mode adaptive control of nonlinear processes , 1997 .

[50]  Somanath Majhi,et al.  Identification of FOPDT and SOPDT process dynamics using closed loop test. , 2014, ISA transactions.

[51]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[52]  Jan Awrejcewicz,et al.  Quantifying Chaos by Various Computational 2 Methods. Part 1: Simple Systems 3 , 2018 .

[53]  Diego de Pereda Sebastián,et al.  On the prediction of glucose concentration under intra-patient variability in type 1 diabetes: A monotone systems approach , 2012 .

[54]  C. Desoer,et al.  Tracking and Disturbance Rejection of MIMO Nonlinear Systems with PI Controller , 1985, 1985 American Control Conference.

[55]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[56]  Rajeeb Dey,et al.  Observer based nonlinear control design for glucose regulation in type 1 diabetic patients: An LMI approach , 2019, Biomed. Signal Process. Control..

[57]  Shankar P. Bhattacharyya,et al.  Robust and Non-fragile PID Controller Design , 2001 .

[58]  Zhenghua Dai,et al.  Noise robust estimates of the largest Lyapunov exponent , 2005 .

[59]  W. J. Williams,et al.  Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures , 2005, Brain Topography.

[60]  L. M. Gomez,et al.  Análisis de la Controlabilidad de Estado de Sistemas Irreversibles Mediante Teoría de Conjuntos , 2015 .

[61]  R. Bergman Toward Physiological Understanding of Glucose Tolerance: Minimal-Model Approach , 1989, Diabetes.

[62]  S. Bhattacharyya,et al.  A generalization of Kharitonov's theorem; Robust stability of interval plants , 1989 .

[63]  William L. Luyben,et al.  Derivation of transfer functions for highly nonlinear distillation columns , 1987 .

[64]  Benoît Chachuat,et al.  Set-Theoretic Approaches in Analysis, Estimation and Control of Nonlinear Systems , 2015 .

[65]  H. Khalil On the design of robust servomechanisms for minimum phase nonlinear systems , 2000 .

[66]  Dipankar Deb,et al.  Robust observer-based adaptive control of blood glucose in diabetic patients , 2020, Int. J. Control.

[67]  Dirk Abel,et al.  A comparative overview of different approaches for calculating the set of all stabilizing PID controller parameters , 2015 .

[68]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[69]  R. Vilanova,et al.  A refinement procedure for PID controller tuning , 2002 .

[70]  Hassan K. Khalil,et al.  Universal integral controllers for minimum-phase nonlinear systems , 2000, IEEE Trans. Autom. Control..

[71]  J. B. Jørgensen,et al.  Closed-Loop Control with Unannounced Exercise for Adults with Type 1 Diabetes using the Ensemble Model Predictive Control. , 2019, Journal of process control.

[72]  Jesús-Antonio Hernández-Riveros,et al.  Optimum PI/PID Controllers Tuning via an Evolutionary Algorithm , 2018 .

[73]  Giuseppe Carlo Calafiore,et al.  Randomized algorithms in robust control , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[74]  Nader Jalili,et al.  Physiological Closed-Loop Control (PCLC) Systems: Review of a Modern Frontier in Automation , 2020, IEEE Access.