Restricting exchangeable nonparametric distributions

Distributions over matrices with exchangeable rows and infinitely many columns are useful in constructing nonparametric latent variable models. However, the distribution implied by such models over the number of features exhibited by each data point may be poorly-suited for many modeling tasks. In this paper, we propose a class of exchangeable nonparametric priors obtained by restricting the domain of existing models. Such models allow us to specify the distribution over the number of features per data point, and can achieve better performance on data sets where the number of features is not well-modeled by the original distribution.

[1]  Jun S. Liu,et al.  Weighted finite population sampling to maximize entropy , 1994 .

[2]  François Caron Bayesian nonparametric models for bipartite graphs , 2012, NIPS.

[3]  Michael I. Jordan,et al.  Bayesian Nonparametric Latent Feature Models , 2011 .

[4]  École d'été de probabilités de Saint-Flour,et al.  École d'été de probabilités de Saint-Flour XIII - 1983 , 1985 .

[5]  Eugenio Regazzini,et al.  EXCHANGEABILITY, PREDICTIVE DISTRIBUTIONS AND PARAMETRIC MODELS* , 2000 .

[6]  A. Volkova A Refinement of the Central Limit Theorem for Sums of Independent Random Indicators , 1996 .

[7]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[8]  Yee Whye Teh,et al.  Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.

[9]  David B. Dunson,et al.  Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.

[10]  Jun S. Liu,et al.  STATISTICAL APPLICATIONS OF THE POISSON-BINOMIAL AND CONDITIONAL BERNOULLI DISTRIBUTIONS , 1997 .

[11]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[12]  Zoubin Ghahramani,et al.  Accelerated Gibbs sampling for the Indian buffet process , 2009 .

[13]  G. Zipf Selected Studies of the Principle of Relative Frequency in Language , 2014 .

[14]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[15]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.

[16]  Zoubin Ghahramani,et al.  Accelerated sampling for the Indian Buffet Process , 2009, ICML '09.

[17]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[18]  Michalis K. Titsias,et al.  The Infinite Gamma-Poisson Feature Model , 2007, NIPS.

[19]  Thomas L. Griffiths,et al.  A Non-Parametric Bayesian Method for Inferring Hidden Causes , 2006, UAI.

[20]  Y. Teh,et al.  Indian Buffet Processes with Power-law Behavior , 2009, NIPS.

[21]  T. Griffiths,et al.  Bayesian nonparametric latent feature models , 2007 .

[22]  Michael I. Jordan,et al.  Sharing Features among Dynamical Systems with Beta Processes , 2009, NIPS.

[23]  R. E. Barlow,et al.  Computing k-out-of-n System Reliability , 1984, IEEE Transactions on Reliability.

[24]  D. Aldous Exchangeability and related topics , 1985 .

[25]  V. Mikhailov On a Refinement of the Central Limit Theorem for Sums of Independent Random Indicators , 1994 .

[26]  J. Kingman,et al.  Completely random measures. , 1967 .

[27]  M. Fernandez,et al.  Closed-Form Expression for the Poisson-Binomial Probability Density Function , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Thomas L. Griffiths,et al.  The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..