Statistical inference problems with applications to computational structural biology

In this data pervasive world, the efficient and accurate modelling of data is crucial to support reliable analyses and to improve the solution to related problems. In order to describe the given data, the problem of selecting a suitable model has to be carefully addressed. Traditional approaches to the problem of optimal model selection have relied predominantly on the number of model parameters rather than the actual parameters themselves. This limits the ability of traditional methods to correctly distinguish among models that, while being of different type, have the same number of model parameters. In order to address the problem of model selection satisfactorily, this thesis explores the Bayesian information-theoretic principle of minimum message length (MML). The inference framework based on the MML principle enables the optimal selection of models by using the constituent parameters to better balance the trade-off between the model’s complexity and its goodness-of-fit to the data. The core of this thesis explores the MML-based inference of some of the commonly used probability distributions whose parameters have not yet been characterized and of mixtures of these probability distributions. The models of these probability distributions allow for accurate modelling of data in the Euclidean space and data that is directional in nature. These probabilistic models and their mixtures have widespread uses in statistical machine learning tasks. In this context, we have developed a general purpose search method to determine the optimal number of mixture components and their parameters that describe the given data in a completely unsupervised setting. The use of the MML modelling paradigm and our proposed search method is explored in detail on a variety of real-world data, specifically on directional text data and on the spatial orientation data of protein three-dimensional structures. Further, mixtures of directional probability distributions have facilitated the design of reliable computational models for protein structural data. Furthermore, the inference framework has been used for concise representations of protein folding patterns using a combination of non-linear parametric curves. The results of this work have a wide-variety of important uses including direct applications in protein structural biology.

[1]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[2]  Morris L. Eaton,et al.  The Application of Invariance to Unbiased Estimation , 1970 .

[3]  Lee J. Bain,et al.  Interval Estimation for the Two-parameter Double Exponential Distribution , 1973 .

[4]  Enes Makalic,et al.  MML Invariant Linear Regression , 2009, Australasian Conference on Artificial Intelligence.

[5]  Thomas Hamelryck,et al.  Probabilistic models and machine learning in structural bioinformatics , 2009, Statistical methods in medical research.

[6]  W R Taylor,et al.  Defining linear segments in protein structure. , 2001, Journal of molecular biology.

[7]  Arun Siddharth Konagurthu,et al.  On Representing Protein Folding Patterns Using Non-Linear Parametric Curves , 2014, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[8]  David L. Dowe,et al.  Point Estimation Using the Kullback-Leibler Loss Function and MML , 1998, PAKDD.

[9]  David Abramson,et al.  Statistical Inference of Protein "LEGO Bricks" , 2013, 2013 IEEE 13th International Conference on Data Mining.

[10]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[11]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[12]  S. Kotz,et al.  AN ASYMMETRIC MULTIVARIATE LAPLACE DISTRIBUTION , 2022 .

[13]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[14]  J. Thornton,et al.  Helix geometry in proteins. , 1988, Journal of molecular biology.

[15]  Yiming Yang,et al.  Von Mises-Fisher Clustering Models , 2014, ICML.

[16]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[17]  Thomas Hamelryck,et al.  Using the Fisher-Bingham distribution in stochastic models for protein structure , 2022 .

[18]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[20]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[21]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  J. Rissanen Stochastic Complexity in Statistical Inquiry Theory , 1989 .

[23]  Stefan Zubrzycki,et al.  Lectures in probability theory and mathematical statistics , 1972 .

[24]  E. Makalic,et al.  Efficient Linear Regression by Minimum Message Length , 2006 .

[25]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[26]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[27]  D. Blackwell Conditional Expectation and Unbiased Sequential Estimation , 1947 .

[28]  Yungtai Lo,et al.  Bias from misspecification of the component variances in a normal mixture , 2011, Comput. Stat. Data Anal..

[29]  Jun Liu,et al.  High-order parameter approximation for von Mises-Fisher distributions , 2012, Appl. Math. Comput..

[30]  D. E. Barton Unbiased estimation of a set of probabilities , 1961 .

[31]  Lloyd Allison,et al.  A new statistical framework to assess structural alignment quality using information compression , 2014, Bioinform..

[32]  William R. Taylor,et al.  Analysis of the tertiary structure of protein β-sheet sandwiches , 1981 .

[33]  Kiheung Kim Protein , 2005, The Lancet.

[34]  G. S. Watson,et al.  ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE , 1956 .

[35]  David L. Dowe,et al.  MML Clustering of Continuous-Valued Data Using Gaussian and t Distributions , 2002, Australian Joint Conference on Artificial Intelligence.

[36]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[37]  R. Douc,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR FOR GENERAL HIDDEN MARKOV MODELS , 2009, 0912.4480.

[38]  R. Lavery,et al.  Describing protein structure: A general algorithm yielding complete helicoidal parameters and a unique overall axis , 1989, Proteins.

[39]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[40]  M. Levitt,et al.  Automatic identification of secondary structure in globular proteins. , 1977, Journal of molecular biology.

[41]  Harshinder Singh,et al.  Probabilistic model for two dependent circular variables , 2002 .

[42]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  N. Sloane,et al.  On the Voronoi Regions of Certain Lattices , 1984 .

[44]  Andrew T. A. Wood,et al.  On the derivatives of the normalising constant of the Bingham distribution , 2007 .

[45]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[46]  D. Kundu Discriminating Between Normal and Laplace Distributions , 2005 .

[47]  Lloyd Allison,et al.  Univariate Polynomial Inference by Monte Carlo Message Length Approximation , 2002, ICML.

[48]  J. Kent The Fisher‐Bingham Distribution on the Sphere , 1982 .

[49]  Roland L. Dunbrack,et al.  Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. , 1997, Journal of molecular biology.

[50]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[51]  Saeed Gazor,et al.  Image Denoising Based on a Mixture of Laplace Distributions with Local Parameters in Complex Wavelet Domain , 2006, 2006 International Conference on Image Processing.

[52]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[53]  Louis-Paul Rivest,et al.  A distribution for dependent unit vectors , 1988 .

[54]  H. Daniels,et al.  The Asymptotic Efficiency of a Maximum Likelihood Estimator , 1961 .

[55]  Nizar Bouguila,et al.  Unsupervised learning of a finite gamma mixture using MML: application to SAR image analysis , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[56]  Enes Makalic,et al.  MMLD Inference of Multilayer Perceptrons , 2011, Algorithmic Probability and Friends.

[57]  G J Barton,et al.  Evaluation and improvement of multiple sequence methods for protein secondary structure prediction , 1999, Proteins.

[58]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[59]  Jean-François Sadoc,et al.  Protein secondary structure assignment through Voronoï tessellation , 2004, Proteins.

[60]  Enes Makalic,et al.  Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions , 2012, Australasian Conference on Artificial Intelligence.

[61]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .

[62]  D. Rubin,et al.  Testing the number of components in a normal mixture , 2001 .

[63]  A M Lesk,et al.  Systematic representation of protein folding patterns. , 1995, Journal of molecular graphics.

[64]  P. Røgen,et al.  Automatic classification of protein structure by using Gauss integrals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  K. Mardia,et al.  A general correlation coefficient for directional data and related regression problems , 1980 .

[66]  David L. Dowe,et al.  Minimum Message Length and Kolmogorov Complexity , 1999, Comput. J..

[67]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[68]  H. Scheraga,et al.  A proposal of standard conventions and nomenclature for the description of polypeptide conformation. , 1966, The Journal of biological chemistry.

[69]  Geoffrey J. McLachlan,et al.  Wallace's Approach to Unsupervised Learning: The Snob Program , 2008, Comput. J..

[70]  H. Bozdogan Determining the Number of Component Clusters in the Standard Multivariate Normal Mixture Model Using Model-Selection Criteria. , 1983 .

[71]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[72]  Christophe Ambroise,et al.  Feature selection in robust clustering based on Laplace mixture , 2006, Pattern Recognit. Lett..

[73]  N. Colloc'h,et al.  Comparison of three algorithms for the assignment of secondary structure in proteins: the advantages of a consensus assignment. , 1993, Protein engineering.

[74]  J. Richardson beta-Sheet topology and the relatedness of proteins. , 1977, Nature.

[75]  D M Boulton,et al.  The information content of a multistate distribution. , 1969, Journal of theoretical biology.

[76]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[77]  G. Schou Estimation of the concentration parameter in von Mises–Fisher distributions , 1978 .

[78]  Jiahua Chen,et al.  Hypothesis test for normal mixture models: The EM approach , 2009, 0908.3428.

[79]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[80]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[81]  Chin-Hui Lee,et al.  Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains , 1994, IEEE Trans. Speech Audio Process..

[82]  Adelaide Figueiredo,et al.  Goodness-of-fit for a concentrated von Mises-Fisher distribution , 2012, Comput. Stat..

[83]  Anders Krogh,et al.  Sampling Realistic Protein Conformations Using Local Structural Bias , 2006, PLoS Comput. Biol..

[84]  M. Eren,et al.  Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. , 1997, Biochemistry.

[85]  Lenore Cowen,et al.  Matt: Local Flexibility Aids Protein Multiple Structure Alignment , 2008, PLoS Comput. Biol..

[86]  A H Louie,et al.  Differential geometry of proteins. Helical approximations. , 1983 .

[87]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[88]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[89]  Hugo Zaragoza,et al.  The Probabilistic Relevance Framework: BM25 and Beyond , 2009, Found. Trends Inf. Retr..

[90]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[91]  Suvrit Sra,et al.  A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x) , 2012, Comput. Stat..

[92]  Asaad M. Ganeiber,et al.  A new method to simulate the Bingham and related distributions in directional data analysis with applications , 2013, 1310.8110.

[93]  Gérard Govaert,et al.  Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  Darlene R Goldstein,et al.  A Laplace mixture model for identification of differential expression in microarray experiments. , 2006, Biostatistics.

[95]  A. Perrakis,et al.  Crystals, x-rays and proteins: comprehensive protein crystallography, by Dennis Sherwood and Jon Cooper , 2011 .

[96]  J. Kalbfleisch,et al.  A modified likelihood ratio test for homogeneity in finite mixture models , 2001 .

[97]  C. S. Wallace,et al.  Unsupervised Learning Using MML , 1996, ICML.

[98]  Te-Won Lee,et al.  On the multivariate Laplace distribution , 2006, IEEE Signal Processing Letters.

[99]  Chris S. Wallace,et al.  A note on the comparison of polynomial selection methods , 1999, AISTATS.

[100]  K. Mardia,et al.  Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data , 2007, Biometrics.

[101]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[102]  Jonathan J. Oliver Introduction to Minimum Encoding Inference , 1994 .

[103]  J. Joseph,et al.  Fourier Series , 2018, Series and Products in the Development of Mathematics.

[104]  F. Richards,et al.  Identification of structural motifs from protein coordinate data: Secondary structure and first‐level supersecondary structure * , 1988, Proteins.

[105]  D. Lomas,et al.  Topography of a 2.0 Å structure of α1‐antitrypsin reveals targets for rational drug design to prevent conformational disease , 2000, Protein science : a publication of the Protein Society.

[106]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[107]  A. Wood Simulation of the von mises fisher distribution , 1994 .

[108]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[109]  Peter J. Stuckey,et al.  Piecewise linear approximation of protein structures using the principle of minimum message length , 2011, Bioinform..

[110]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[111]  H. Akaike A new look at the statistical model identification , 1974 .

[112]  N. Fisher,et al.  The BIAS of the maximum likelihood estimators of the von mises-fisher concentration parameters , 1981 .

[113]  Elfi Kraka,et al.  !"#c%&'(&)* ,*-."c)/*&(&)* )0 ."/12,% ,*-!&#()%("- 3"c)*-,%4 3(%1c(1%"# &* 5%)("&*# 6#&*/ (h" 81()9,("-5%)("&* 3(%1c(1%" 8*,24#&# :"(h)- 1= Introduction , 2022 .

[114]  Jonathan J. Oliver,et al.  MDL and MML: Similarities and differences , 1994 .

[115]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[116]  Gauss M. Cordeiro,et al.  Bias correction in ARMA models , 1994 .

[117]  Chris S. Wallace,et al.  The Complexity of Strict Minimum Message Length Inference , 2002, Comput. J..

[118]  A V Finkelstein,et al.  The classification and origins of protein folding patterns. , 1990, Annual review of biochemistry.

[119]  On testing the number of components in finite mixture models with known relevant component distributions , 1997 .

[120]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[121]  Jorma Rissanen,et al.  Minimum Description Length Principle , 2010, Encyclopedia of Machine Learning.

[122]  Arthur M. Lesk,et al.  Introduction to Protein Science: Architecture, Function, and Genomics , 2001 .

[123]  David L. Dowe,et al.  MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions , 2000, Stat. Comput..

[124]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[125]  Nick V. Grishin,et al.  PALSSE: A program to delineate linear secondary structural elements from protein structures , 2005, BMC Bioinformatics.

[126]  C. S. Wallace,et al.  An Information Measure for Single Link Classification , 1975, Comput. J..

[127]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[128]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[129]  K. Mardia Distribution Theory for the Von Mises-Fisher Distribution and Its Application , 1975 .

[130]  Gilles Celeux,et al.  EM for mixtures , 2015, Stat. Comput..

[131]  C. S. Wallace,et al.  An Information Measure for Hierarchic Classification , 1973, Comput. J..

[132]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[133]  G. Gray,et al.  Bias in misspecified mixtures. , 1994, Biometrics.

[134]  L. Joseph,et al.  Bayesian Statistics: An Introduction , 1989 .

[135]  Nick V. Grishin,et al.  ProSMoS server: a pattern-based search using interaction matrix representation of protein structures , 2009, Nucleic Acids Res..

[136]  K. Mardia Characterizations of Directional Distributions , 1975 .

[137]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[138]  Inderjit S. Dhillon,et al.  Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..

[139]  William D. Penny,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[140]  Pedro Puig,et al.  Tests of Fit for the Laplace Distribution, With Applications , 2000, Technometrics.

[141]  Nizar Bouguila,et al.  High-Dimensional Unsupervised Selection and Estimation of a Finite Generalized Dirichlet Mixture Model Based on Minimum Message Length , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  Geoffrey E. Hinton,et al.  SMEM Algorithm for Mixture Models , 1998, Neural Computation.

[143]  Pengfei Li,et al.  Testing the Order of a Finite Mixture , 2010 .

[144]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[145]  Yu Wai Chen,et al.  The crystal structure of the ubiquitin-like (UbL) domain of human homologue A of Rad23 (hHR23A) protein. , 2011, Protein engineering, design & selection : PEDS.

[146]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[147]  G. B. Wetherill,et al.  Quality Control and Industrial Statistics , 1975 .

[148]  Andrew T. A. Wood,et al.  Some notes on the fisher–bingham family on the sphere , 1988 .

[149]  R. M. Norton,et al.  The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator , 1984 .

[150]  C. S. Wallace,et al.  Hierarchical Clusters of Vegetation Types. , 2005 .

[151]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[152]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[153]  H. Bozdogan Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix , 1993 .

[154]  R. Mooney,et al.  Impact of Similarity Measures on Web-page Clustering , 2000 .

[155]  David L. Dowe,et al.  MML Estimation of the Parameters of the Sherical Fisher Distribution , 1996, ALT.

[156]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[157]  David L. Dowe,et al.  Intrinsic classification by MML - the Snob program , 1994 .

[158]  Lloyd Allison,et al.  Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions , 2015, Machine Learning.

[159]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[160]  Marc S. Paolella,et al.  Modelling and predicting market risk with Laplace–Gaussian mixture distributions , 2005 .

[161]  Kanti V. Mardia,et al.  A Goodness‐Of‐Fit Test for the von Mises–Fisher Distribution , 1984 .

[162]  P. S. Dwyer Some Applications of Matrix Derivatives in Multivariate Analysis , 1967 .

[163]  Kanti V. Mardia,et al.  A multivariate von mises distribution with applications to bioinformatics , 2008 .

[164]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[165]  Inderjit S. Dhillon,et al.  Generative model-based clustering of directional data , 2003, KDD '03.

[166]  C. S. Wallace,et al.  Bayesian Estimation of the Von Mises Concentration Parameter , 1996 .

[167]  Lloyd Allison,et al.  Minimum message length inference of secondary structure from protein coordinate data , 2012, Bioinform..

[168]  Shin Ishii,et al.  Parameter estimation for von Mises–Fisher distributions , 2007, Comput. Stat..

[169]  A. Basu Estimates of Reliability for Some Distributions Useful in Life Testing , 1964 .

[170]  William R. Taylor,et al.  An ellipsoidal approximation of protein shape , 1983 .

[171]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.

[172]  C. S. Wallace,et al.  Circular clustering of protein dihedral angles by Minimum Message Length. , 1996, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[173]  Chris S. Wallace,et al.  A Program for Numerical Classification , 1970, Comput. J..

[174]  David L. Dowe,et al.  Unsupervised Learning of Correlated Multivariate Gaussian Mixture Models Using MML , 2003, Australian Conference on Artificial Intelligence.

[175]  H. Bozdogan On the information-based measure of covariance complexity and its application to the evaluation of multivariate linear models , 1990 .

[176]  W. J. Whiten,et al.  Fitting Mixtures of Kent Distributions to Aid in Joint Set Identification , 2001 .

[177]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[178]  C. Chothia,et al.  Helix to helix packing in proteins. , 1981, Journal of molecular biology.

[179]  K. Mardia,et al.  A small circle distribution on the sphere , 1978 .

[180]  Gauss M. Cordeiro,et al.  Theory & Methods: Second‐order biases of the maximum likelihood estimates in von Mises regression models , 1999 .

[181]  Parthan Kasarapu,et al.  Modelling of directional data using Kent distributions , 2015, ArXiv.

[182]  Peter J. Stuckey,et al.  Structural search and retrieval using a tableau representation of protein folding patterns , 2008, Bioinform..

[183]  J. Fourier Théorie analytique de la chaleur , 2009 .

[184]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[185]  C. S. Wallace,et al.  Estimation and Inference by Compact Coding , 1987 .

[186]  Luiz H. Dore,et al.  Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution , 2016 .