Accelerated Ionic Motion in Amorphous Memristor Oxides for Nonvolatile Memories and Neuromorphic Computing

Memristive devices based on mixed ionic–electronic resistive switches have an enormous potential to replace today’s transistor-based memories and Von Neumann computing architectures thanks to their ability for nonvolatile information storage and neuromorphic computing. It still remains unclear however how ionic carriers are propagated in amorphous oxide films at high local electric fields. By using memristive model devices based on LaFeO3 with either amorphous or epitaxial nanostructures, we engineer the structural local bonding units and increase the oxygen-ionic diffusion coefficient by one order of magnitude for the amorphous oxide, affecting the resistive switching operation. We show that only devices based on amorphous LaFeO3 films reveal memristive behavior due to their increased oxygen vacancy concentration. We achieved stable resistive switching with switching times down to microseconds and confirm that it is predominantly the oxygen-ionic diffusion character and not electronic defect state changes that modulate the resistive switching device response. Ultimately, these results show that the local arrangement of structural bonding units in amorphous perovskite films at room temperature can be used to largely tune the oxygen vacancy (defect) kinetics for resistive switches (memristors) that are both theoretically challenging to predict and promising for future memory and neuromorphic computing applications.

[1]  R. Dittmann,et al.  Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM , 2017, Advanced materials.

[2]  C. Monty,et al.  18O diffusion through amorphous SiO2 and cristobalite , 1993 .

[3]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[4]  J. Schoonman,et al.  Raman scattering and ionic transport in SrCe1-xYbxO3 , 1992 .

[5]  M. Trzhaskovskaya,et al.  Photoionization cross sections and photoelectron angular distributions for x-ray line energies in the range 0.132–4.509 keV targets: 1 ≤ Z ≤ 100 , 1979 .

[6]  J. Rupp,et al.  Design of Oxygen Vacancy Configuration for Memristive Systems. , 2017, ACS nano.

[7]  P. Ciambelli,et al.  La, Ca and Fe oxide perovskites: preparation, characterization and catalytic properties for methane combustion , 2001 .

[8]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[9]  S. Balatti,et al.  Evidence for Voltage-Driven Set/Reset Processes in Bipolar Switching RRAM , 2012, IEEE Transactions on Electron Devices.

[10]  James M. Rondinelli,et al.  Lattice normal modes and electronic properties of the correlated metal LaNiO$_3$ , 2011, 1105.0198.

[11]  Rainer Waser,et al.  Subfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices. , 2017, ACS nano.

[12]  Juergen Fleig,et al.  A novel ToF-SIMS operation mode for improved accuracy and lateral resolution of oxygen isotope measurements on oxides , 2013 .

[13]  Juergen Fleig,et al.  A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: Application and performance , 2014, Applied surface science.

[14]  J. Rupp,et al.  Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature , 2015 .

[15]  D. Strukov,et al.  Nanoscale Resistive Switching in Amorphous Perovskite Oxide (a‐SrTiO3) Memristors , 2014 .

[16]  J. Spanier,et al.  Raman scattering in La1−xSrxFeO3−δ thin films: annealing-induced reduction and phase transformation , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  K. Wiik,et al.  Electronic properties of polycrystalline LaFeO3. Part II: Defect modelling including Schottky defects , 2005 .

[18]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[19]  Qingfang Liu,et al.  Multiferroic and multilevel resistive switching properties of LaFeO3-PbTiO3 films grown on Nb:SrTiO3 (001) substrate , 2015 .

[20]  V. Lyahovitskaya,et al.  X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of Ba Ti O 3 and Sr Ti O 3 , 2008 .

[21]  Andrea Cavallaro,et al.  Engineering Mixed Ionic Electronic Conduction in La0.8Sr0.2MnO3+δ Nanostructures through Fast Grain Boundary Oxygen Diffusivity , 2015 .

[22]  H. Bouwmeester,et al.  Numerical evaluation of eigenvalues of the sheet diffusion problem in the surface/diffusion mixed regime , 2000 .

[23]  T. Nabatame,et al.  Comparative Studies on Oxygen Diffusion Coefficients for Amorphous and γ-Al2O3 Films using 18O Isotope , 2003 .

[24]  V. G. Ivanov,et al.  Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO 3 and LaMnO 3 , 1999 .

[25]  Markus Kubicek,et al.  A microdot multilayer oxide device: let us tune the strain-ionic transport interaction. , 2014, ACS nano.

[26]  M. Burriel,et al.  Interface-type resistive switching in perovskite materials , 2017, Journal of Electroceramics.

[27]  M. Lanagan,et al.  Impedance analysis of amorphous and polycrystalline tantalum oxide sputtered films , 2011 .

[28]  Ligang Gao,et al.  High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm , 2011, Nanotechnology.

[29]  Leon O. Chua,et al.  If it’s pinched it’s a memristor , 2014 .

[30]  J. Sun,et al.  Nonlinear dependence of set time on pulse voltage caused by thermal accelerated breakdown in the Ti/HfO2/Pt resistive switching devices , 2012 .

[31]  N. S. McIntyre,et al.  Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds , 2004 .

[32]  M. Guennou,et al.  Conductivity and Local Structure of LaNiO3 Thin Films , 2017, Advanced materials.

[33]  Hiroyuki Yamada,et al.  Resistive switching artificially induced in a dielectric/ferroelectric composite diode , 2013 .

[34]  Adam M. Cordi,et al.  Band structure and optical transitions in LaFeO3: theory and experiment , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  J. Rupp,et al.  Perovskite oxides – a review on a versatile material class for solar-to-fuel conversion processes , 2017 .

[36]  Qingfang Liu,et al.  Hydrothermal epitaxial growth and nonvolatile bipolar resistive switching behavior of LaFeO3-PbTiO3 films on Nb:SrTiO3(001) substrate , 2014 .

[37]  Jürgen Fleig,et al.  The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data , 2002 .

[38]  Markus Kubicek,et al.  Memristor Kinetics and Diffusion Characteristics for Mixed Anionic‐Electronic SrTiO3‐δ Bits: The Memristor‐Based Cottrell Analysis Connecting Material to Device Performance , 2014 .

[39]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[40]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.

[41]  N. Alford,et al.  High-temperature conductivity evaluation of Nb doped SrTiO3 thin films: Influence of strain and growth mechanism , 2013 .

[42]  J. Spanier,et al.  Optical absorption in epitaxial La1−xSrxFeO3 thin films , 2013 .

[43]  Andrew G. Glen,et al.  APPL , 2001 .

[44]  Markus Kubicek,et al.  Uncovering Two Competing Switching Mechanisms for Epitaxial and Ultrathin Strontium Titanate-Based Resistive Switching Bits. , 2015, ACS nano.

[45]  R. Köferstein Magnetic and Optical Investigations on LaFeO3 Powders with Different Particle Sizes and Corresponding Ceramics , 2013 .

[46]  R. Dittmann,et al.  Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3? , 2014, Nanoscale.

[47]  Resistive switching characteristics in dielectric/ferroelectric composite devices improved by post-thermal annealing at relatively low temperature , 2014 .

[48]  J. Goodenough,et al.  Sr‐ and Ni‐Doped LaCoO3 and LaFeO3 Perovskites New Cathode Materials for Solid‐Oxide Fuel Cells , 1998 .

[49]  B. Yildiz,et al.  Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in La1–xSrxCoO3−δ Thin Films , 2013, ACS nano.

[50]  Michael Bedford Taylor,et al.  A Landscape of the New Dark Silicon Design Regime , 2013, IEEE Micro.

[51]  Dmitri B. Strukov,et al.  Donor‐Induced Performance Tuning of Amorphous SrTiO3 Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability , 2015 .

[52]  Rainer Waser,et al.  Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films , 2006 .

[53]  Juergen Fleig Microelectrodes in solid state ionics , 2003 .

[54]  Omid Kavehei,et al.  Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO3−x memristors , 2016, Nanotechnology.

[55]  A. Rossi,et al.  Combined use of X-ray photoelectron and Mössbauer spectroscopic techniques in the analytical characterization of iron oxidation state in amphibole asbestos , 2010, Analytical and bioanalytical chemistry.

[56]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[57]  L. Gauckler,et al.  Microstructures and electrical conductivity of nanocrystalline ceria-based thin films , 2006 .

[58]  L. Gauckler,et al.  Time–Temperature–Transformation (TTT) Diagrams for Crystallization of Metal Oxide Thin Films , 2010 .

[59]  J. M. Perez-Mato,et al.  Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies , 2003 .

[60]  R. Stevenson Changing the channel , 2013, IEEE Spectrum.

[61]  Fabio L. Traversa,et al.  Universal Memcomputing Machines , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[62]  D. Tenne,et al.  Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy , 2006, Science.

[63]  J. Kreisel,et al.  Probing Individual Layers in Functional Oxide Multilayers by Wavelength‐Dependent Raman Scattering , 2012, 1205.3334.

[64]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[65]  Reto Pfenninger,et al.  Designing Strained Interface Heterostructures for Memristive Devices , 2017, Advanced materials.

[66]  H. Yamamura,et al.  Magnetic and electrical properties in the defect perovskite system La1−xNaxFeO3−δ , 1981 .

[67]  C. Thomsen,et al.  Raman spectroscopy of orthorhombic perovskitelike YMnO_{3} and LaMnO_{3} , 1998 .

[68]  M. Guennou,et al.  Raman spectroscopy of rare-earth orthoferrites R FeO 3 ( R =La, Sm, Eu, Gd, Tb, Dy) , 2016, 1609.07987.

[69]  Rajendra P. Gupta,et al.  Calculation of multiplet structure of core p -vacancy levels. II , 1974 .

[70]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[71]  S. Menzel,et al.  Interrelation of Sweep and Pulse Analysis of the SET Process in SrTiO3 Resistive Switching Memories , 2014, IEEE Electron Device Letters.

[72]  R. Dittmann,et al.  Impact of Defect Distribution on Resistive Switching Characteristics of Sr2TiO4 Thin Films , 2010, Advanced materials.

[73]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[74]  Cheol Seong Hwang,et al.  Impedance spectroscopic analysis on effects of partial oxidation of TiN bottom electrode and microstructure of amorphous and crystalline HfO2 thin films on their bipolar resistive switching. , 2014, Nanoscale.

[75]  K. Wiik,et al.  Electronic properties of polycrystalline LaFeO3. Part I: Experimental results and the qualitative role of Schottky defects , 2005 .

[76]  N. N. Toan,et al.  Gas sensing with semiconducting perovskite oxide LaFeO3 , 2003 .

[77]  S. Menzel,et al.  Physics of the Switching Kinetics in Resistive Memories , 2015 .

[78]  S. Abanades,et al.  Investigation of Perovskite Structures as Oxygen-Exchange Redox Materials for Hydrogen Production from Thermochemical Two-Step Water-Splitting Cycles , 2014 .

[79]  Markus Kubicek,et al.  How Does Moisture Affect the Physical Property of Memristance for Anionic–Electronic Resistive Switching Memories? , 2015 .

[80]  J. Rupp,et al.  Glass‐Type Polyamorphism in Li‐Garnet Thin Film Solid State Battery Conductors , 2018 .

[81]  Jong-Won Yoon,et al.  Characterization and magnetic properties of LaFeO3 nanofibers synthesized by electrospinning , 2014 .

[82]  J. Sun,et al.  Crystallinity dependence of resistance switching in La0.7Ca0.3MnO3 films grown by pulsed laser deposition , 2009 .

[83]  J. Andreasson,et al.  Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution , 2008 .

[84]  R. Waser,et al.  Ion migration in crystalline and amorphous HfO X , 2017 .

[85]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[86]  R. Dittmann,et al.  Spectromicroscopic insights for rational design of redox-based memristive devices , 2015, Nature Communications.

[87]  Lixin Sun,et al.  Dislocations in SrTiO3: easy to reduce but not so fast for oxygen transport. , 2015, Journal of the American Chemical Society.