Endogenous Configuration Space Approach in Robotics Research

[1]  Roger W. Brockett,et al.  Robotic manipulators and the product of exponentials formula , 1984 .

[2]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[3]  Jonghoon Park,et al.  Multiple tasks manipulation for a robotic manipulator , 2004, Adv. Robotics.

[4]  J. Wen,et al.  Nonlinear Model Predictive Control for the Swing-Up of a Rotary Inverted Pendulum , 2004 .

[5]  Krzysztof Tchoń,et al.  Optimal motion planning for non-holonomic robotic systems * *This research was supported by the Wroclaw University of Science and Technology under a statutory project. , 2017 .

[6]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[7]  Katarzyna Zadarnowska,et al.  Doubly nonholonomic mobile manipulators , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Krzysztof Tchoń,et al.  Motion Planning of Nonholonomic Systems with Dynamics , 2009 .

[9]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[10]  Krzysztof Tchoń,et al.  Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms , 2003 .

[11]  Krzysztof Tchoń,et al.  Control and Motion Planning of a Nonholonomic Parallel Orienting Platform , 2015 .

[12]  Robert Muszynski,et al.  Instantaneous kinematics and dexterity of mobile manipulators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Héctor J. Sussmann,et al.  Line-Integral Estimates and Motion Planning Using the Continuation Method , 1998 .

[14]  Krzysztof Tchon,et al.  Repeatability of inverse kinematics algorithms for mobile manipulators , 2002, IEEE Trans. Autom. Control..

[15]  Joanna Ratajczak,et al.  General Lagrange-Type Jacobian Inverse for Nonholonomic Robotic Systems , 2018, IEEE Transactions on Robotics.

[16]  Janusz Jakubiak,et al.  Extended Jacobian inverse kinematics algorithms for mobile manipulators , 2002, J. Field Robotics.

[17]  Miroslaw Galicki,et al.  Inverse Kinematics Solution to Mobile Manipulators , 2003, Int. J. Robotics Res..

[18]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[19]  Krzysztof Tchon,et al.  On Dynamic Properties of Singularity Robust Jacobian Inverse Kinematics , 2009, IEEE Transactions on Automatic Control.

[20]  Katarzyna Zadarnowska,et al.  A control theory framework for performance evaluation of mobile manipulators , 2007, Robotica.

[21]  Janusz Jakubiak,et al.  Motion planning in velocity affine mechanical systems , 2010, Int. J. Control.

[22]  Joanna Ratajczak,et al.  Feedback equivalence and motion planning of a space manipulator , 2019 .

[23]  Spyros G. Tzafestas,et al.  Introduction to Mobile Robot Control , 2013 .

[24]  John Baillieul,et al.  Kinematic programming alternatives for redundant manipulators , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[25]  K. Tchoń,et al.  Modeling and control of a skid-steering mobile platform with coupled side wheels , 2015 .

[26]  K. Tchoń,et al.  Motion planning of the trident snake robot equipped with passive or active wheels , 2012 .

[27]  Katarzyna Zadarnowska,et al.  Kinematic dexterity of mobile manipulators: an endogenous configuration space approach , 2003, Robotica.

[28]  Y. Chitour A continuation method for motion-planning problems , 2006 .

[29]  Bernard Bayle,et al.  Manipulability of Wheeled Mobile Manipulators: Application to Motion Generation , 2003 .

[30]  Miroslaw Galicki,et al.  Tracking the Kinematically Optimal Trajectories by Mobile Manipulators , 2019, J. Intell. Robotic Syst..

[31]  Bruno Siciliano,et al.  Coordinate Transformation: A Solution Algorithm for One Class of Robots , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  A. Ratajczak Egalitarian versus prioritarian approach in multiple task motion planning for nonholonomic systems , 2017 .

[33]  M. Ishikawa,et al.  Development and Control Experiment of the Trident Snake Robot , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[34]  Charles A. Klein,et al.  Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators , 1987 .

[35]  J. Jakubiak,et al.  Regular Jacobian motion planning algorithms for mobile manipulators , 2002 .

[36]  Eduardo D. Sontag A general approach to path planning for systems without drift , 1998 .

[37]  Krzysztof Tchon,et al.  Dynamics and Motion Planning of Trident Snake Robot , 2014, J. Intell. Robotic Syst..

[38]  Katarzyna Zadarnowska,et al.  Switched Modeling and Task–Priority Motion Planning of Wheeled Mobile Robots Subject to Slipping , 2017, J. Intell. Robotic Syst..

[39]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[40]  Emmanuel Trélat,et al.  Singular Trajectories of Control-Affine Systems , 2006, SIAM J. Control. Optim..

[41]  François Alouges,et al.  A Motion-Planning Algorithm for the Rolling-Body Problem , 2010, IEEE Trans. Robotics.

[42]  Robert Muszynski,et al.  Singular inverse kinematic problem for robotic manipulators: a normal form approach , 1998, IEEE Trans. Robotics Autom..

[43]  Ignacy Duleba,et al.  Layer, Lie algebraic method of motion planning for nonholonomic systems , 2012, J. Frankl. Inst..

[44]  Krzysztof Tchon Repeatable, extended Jacobian inverse kinematics algorithm for mobile manipulators , 2006, Syst. Control. Lett..

[45]  Joanna Ratajczak,et al.  Dynamically consistent Jacobian inverse for mobile manipulators , 2016, Int. J. Control.

[46]  J. Jakubiak,et al.  On Predictive Approach to Inverse Kinematics of Mobile Manipulators , 2007, 2007 IEEE International Conference on Control and Automation.

[47]  Krzysztof Tchon,et al.  Constrained motion planning of nonholonomic systems , 2011, Syst. Control. Lett..

[48]  Ignacy Duleba,et al.  Nonholonomic motion planning based on Newton algorithm with energy optimization , 2003, IEEE Trans. Control. Syst. Technol..

[49]  A. Ratajczak Trajectory reproduction and trajectory tracking problem for the nonholonomic systems , 2016 .

[50]  Krzysztof Tchon,et al.  Motion planning of a balancing robot with threefold sub-tasks: An endogenous configuration space approach , 2011, 2011 IEEE International Conference on Robotics and Automation.

[51]  Krzysztof Tchoń,et al.  Lagrangian Jacobian Motion Planning: A Parametric Approach , 2017, J. Intell. Robotic Syst..

[52]  Joanna Ratajczak,et al.  Singularities, Normal Forms, and Motion Planning for Non-holonmic Robotic Systems , 2019 .

[53]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[54]  J. Wen,et al.  SINGULARITY COMPUTATION FOR ITERATIVE CONTROL OF NONLINEAR AFFINE SYSTEMS , 2000 .

[55]  Wassim M. Haddad,et al.  Abnormal Optimal Trajectory Planning of Multi-Body Systems in the Presence of Holonomic and Nonholonomic Constraints , 2018, J. Intell. Robotic Syst..

[56]  Krzysztof Tchon,et al.  Iterative learning control and the singularity robust Jacobian inverse for mobile manipulators , 2010, Int. J. Control.

[57]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[58]  E. Polak,et al.  System Theory , 1963 .

[59]  Joanna Ratajczak,et al.  Dynamically consistent Jacobian inverse for non-holonomic robotic systems , 2016 .

[60]  Hayden M. Reeve,et al.  Erratum: “Investigation of Steady-State Drawing Force and Heat Transfer in Polymer Optical Fiber Manufacturing” [Journal of Heat Transfer, 2004, 126(2), pp. 236–243] , 2004 .

[61]  A. Chelouah,et al.  On the motion planning of rolling surfaces , 2003 .

[62]  Oussama Khatib,et al.  Inertial Properties in Robotic Manipulation: An Object-Level Framework , 1995, Int. J. Robotics Res..

[63]  Janusz Jakubiak,et al.  Extended Jacobian inverse kinematics algorithm for nonholonomic mobile robots , 2006 .

[64]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[65]  C. Johnson,et al.  Singular solutions in problems of optimal control , 1963 .

[66]  Krzysztof Tchoń,et al.  Lagrangian Jacobian inverse for nonholonomic robotic systems , 2015 .

[67]  Witold Respondek,et al.  Normal Forms and Configuration Singularities of a Space Manipulator , 2019, J. Intell. Robotic Syst..

[68]  Krzysztof Tchon,et al.  Towards constrained motion planning of mobile manipulators , 2010, 2010 IEEE International Conference on Robotics and Automation.

[69]  J. Jakubiak,et al.  A hyperbolic, extended Jacobian inverse kinematics algorithm for mobile manipulators , 2005 .

[70]  Krzysztof Tchoń,et al.  Endogenous Configuration Space Approach: An Intersection of Robotics and Control Theory , 2017 .

[71]  Krzysztof Tchon,et al.  Task-priority motion planning of underactuated systems: an endogenous configuration space approach , 2010, Robotica.

[72]  Joanna Ratajczak Design of inverse kinematics algorithms: extended Jacobian approximation of the dynamically consistent Jacobian inverse , 2015 .

[73]  Tomasz Rybus,et al.  Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters , 2016 .

[74]  K. Tchoń,et al.  Multiple-task motion planning of non-holonomic systems with dynamics , 2013 .

[75]  John T. Wen,et al.  Kinematic path planning for robots with holonomic and nonholonomic constraints , 1998 .

[76]  Krzysztof Tchoń,et al.  On dynamically consistent Jacobian inverse for non-holonomic robotic systems , 2017 .

[77]  Janusz Jakubiak,et al.  A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[78]  Joanna Ratajczak,et al.  Dynamic non-holonomic motion planning by means of dynamically consistent Jacobian inverse , 2018, IMA J. Math. Control. Inf..

[79]  Adam Ratajczak,et al.  Trajectory Reproduction Algorithm in Application to an On-Orbit Docking Maneuver with Tumbling Target , 2019, 2019 12th International Workshop on Robot Motion and Control (RoMoCo).

[80]  Krzysztof Tchoń,et al.  Kinematics of mobile manipulators : a control theoretic perspective , 2001 .