A Homotopy Coordinate Descent Optimization Method for l0-Norm Regularized Least Square Problem

This paper proposes a homotopy coordinate descent (HCD) method to solve the $l_0$-norm regularized least square ($l_0$-LS) problem for compressed sensing, which combine the homotopy technique with a variant of coordinate descent method. Differs from the classical coordinate descent algorithms, HCD provides three strategies to speed up the convergence: warm start initialization, active set updating, and strong rule for active set initialization. The active set is pre-selected using a strong rule, then the coordinates of the active set are updated while those of inactive set are unchanged. The homotopy strategy provides a set of warm start initial solutions for a sequence of decreasing values of the regularization factor, which ensures all iterations along the homotopy solution path are sparse. Computational experiments on simulate signals and natural signals demonstrate effectiveness of the proposed algorithm, in accurately and efficiently reconstructing sparse solutions of the $l_0$-LS problem, whether the observation is noisy or not.

[1]  Larry S. Davis,et al.  Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Yuan Yan Tang,et al.  Weighted Couple Sparse Representation With Classified Regularization for Impulse Noise Removal , 2015, IEEE Transactions on Image Processing.

[3]  Ajmal Mian,et al.  Nonparametric Coupled Bayesian Dictionary and Classifier Learning for Hyperspectral Classification , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Allen Y. Yang,et al.  A Review of Fast l1-Minimization Algorithms for Robust Face Recognition , 2010, ArXiv.

[5]  R. Tibshirani,et al.  Strong rules for discarding predictors in lasso‐type problems , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[6]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[7]  Zongben Xu,et al.  $L_{1/2}$ Regularization: A Thresholding Representation Theory and a Fast Solver , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[8]  Ivor W. Tsang,et al.  Matching Pursuit LASSO Part II: Applications and Sparse Recovery Over Batch Signals , 2013, IEEE Transactions on Signal Processing.

[9]  Lin Xiao,et al.  A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem , 2012, SIAM J. Optim..

[10]  Carlos A. Loza RobOMP: Robust variants of Orthogonal Matching Pursuit for sparse representations , 2019, PeerJ Prepr..

[11]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[12]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[13]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[14]  Ivor W. Tsang,et al.  Matching Pursuit LASSO Part I: Sparse Recovery Over Big Dictionary , 2015, IEEE Transactions on Signal Processing.

[15]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[16]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[17]  Xiaojun Chen,et al.  Non-Lipschitz $\ell_{p}$-Regularization and Box Constrained Model for Image Restoration , 2012, IEEE Transactions on Image Processing.

[18]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[19]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[20]  Wenxing Zhu,et al.  Homotopy Methods Based on $l_{0}$ -Norm for Compressed Sensing , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[21]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[22]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Yuan Yan Tang,et al.  Mixed Noise Removal via Robust Constrained Sparse Representation , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[24]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[25]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[26]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[27]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[28]  Zhaosong Lu,et al.  Iterative hard thresholding methods for l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_0$$\end{document} regulari , 2012, Mathematical Programming.

[29]  Allen Y. Yang,et al.  A Review of Fast L(1)-Minimization Algorithms for Robust Face Recognition , 2010 .

[30]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[31]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[32]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[33]  Chao Zhang,et al.  A comparison of typical ℓp minimization algorithms , 2013, Neurocomputing.

[34]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[35]  Mengdi Wang,et al.  Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python , 2019, J. Mach. Learn. Res..

[36]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..