Variable structure robot control systems: The RAPP approach

Abstract This paper presents a method of designing variable structure control systems for robots. As the on-board robot computational resources are limited, but in some cases the demands imposed on the robot by the user are virtually limitless, the solution is to produce a variable structure system. The task dependent part has to be exchanged, however the task governs the activities of the robot. Thus not only exchange of some task-dependent modules is required, but also supervisory responsibilities have to be switched. Such control systems are necessary in the case of robot companions, where the owner of the robot may demand from it to provide many services.

[1]  Tao Zhang,et al.  Unsupervised learning to detect loops using deep neural networks for visual SLAM system , 2017, Auton. Robots.

[2]  Juan-Carlos Cano,et al.  HOP: achieving efficient anonymity in MANETs by combining HIP, OLSR, and pseudonyms , 2006, OOPSLA 2006.

[3]  Hiroshi Ishiguro,et al.  A robot architecture based on situated modules , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[4]  Cezary Zieliński,et al.  Stigmergic cooperation of autonomous robots , 2009 .

[5]  Jan Bosch,et al.  Dynamic Variability in Software-Intensive Embedded System Families , 2012, Computer.

[6]  Allen R. Hanson,et al.  Mobile manipulators for assisted living in residential settings , 2008, Auton. Robots.

[7]  Pieter Abbeel,et al.  Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding , 2010, 2010 IEEE International Conference on Robotics and Automation.

[8]  Paolo Dario,et al.  Design of a cloud robotic system to support senior citizens: the KuBo experience , 2017, Auton. Robots.

[9]  Cezary Zieliński Motion Generators in MRROC++ Based Robot Controllers , 2002 .

[10]  Cezary Zieli « ski A Quasi-Formal Approach to Structuring Multi-Robot System Controllers , 2001 .

[11]  Maja J. Mataric,et al.  Issues and approaches in the design of collective autonomous agents , 1995, Robotics Auton. Syst..

[12]  Vijay Kumar,et al.  Trajectory design and control for aggressive formation flight with quadrotors , 2012, Auton. Robots.

[13]  Odest Chadwicke Jenkins,et al.  Rosbridge: ROS for Non-ROS Users , 2011, ISRR.

[14]  Cezary Zielinski,et al.  Control and programming of a multi-robot-based reconfigurable fixture , 2013, Ind. Robot.

[15]  Norihiro Hagita,et al.  Ubiquitous robotics: Recent challenges and future trends , 2013, Robotics Auton. Syst..

[16]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..

[17]  Antonio Cisternino,et al.  Trends in Robotic Software Frameworks , 2005, PPSDR@ICRA.

[18]  Cezary Zieliński Reaction based robot control , 1994 .

[19]  Swati Gupta,et al.  A brief survey and analysis of multi-robot communication and coordination , 2015, International Conference on Computing, Communication & Automation.

[20]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[21]  Cezary Zielinski,et al.  Towards an integrated robotics architecture for social inclusion – The RAPP paradigm , 2017, Cognitive Systems Research.

[22]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[23]  Teresa Zielinska,et al.  Development of a walking machine: mechanical design and control problems , 2002 .

[24]  Cezary Zielinski,et al.  Robot Control System Design Exemplified by Multi-Camera Visual Servoing , 2015, J. Intell. Robotic Syst..

[25]  Andrzej Bartoszewicz,et al.  Remarks on Discrete-time Variable Structure Control Systems , 1996 .

[26]  Tomasz Winiarski,et al.  Nao Robot Navigation System Structure Development in an Agent-Based Architecture of the RAPP Platform , 2016, AUTOMATION.

[27]  Michael R. M. Jenkin,et al.  A taxonomy for multi-agent robotics , 1996, Auton. Robots.

[28]  Cezary Zielinski,et al.  A systematic method of designing control systems for service and field robots , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[29]  Martin Nilsson,et al.  Cooperative multi-robot box-pushing , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[30]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[31]  Cezary Zielinski,et al.  Distributed, reconfigurable architecture for robot companions exemplified by a voice-mail application , 2015, 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR).

[32]  Michael R. M. Jenkin,et al.  Experiments in sensing and communication for robot convoy navigation , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[33]  Marco Dorigo,et al.  Cooperative hole avoidance in a swarm-bot , 2006, Robotics Auton. Syst..

[34]  Alessandro Saffiotti,et al.  Design of cloud robotic services for senior citizens to improve independent living in multiple environments , 2015, Intelligenza Artificiale.

[35]  Pericles A. Mitkas,et al.  An automatic speech detection architecture for social robot oral interaction , 2015, AM '15.

[36]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[37]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant, cooperative control of heterogeneous mobile robots , 1994 .

[38]  Paul S. Schenker,et al.  Distributed Control of Multi-Robot Systems Engaged in Tightly Coupled Tasks , 2004, Auton. Robots.

[39]  Sofia Reppou,et al.  Social Inclusion with Robots: A RAPP Case Study Using NAO for Technology Illiterate Elderly at Ormylia Foundation , 2015, Progress in Automation, Robotics and Measuring Techniques.

[40]  Albert Ali Salah,et al.  An autonomous robotic exercise tutor for elderly people , 2017, Auton. Robots.

[41]  Karsten Berns,et al.  Mechanical construction and computer architecture of the four-legged walking machine BISAM , 1999 .

[42]  Michael A. Arbib,et al.  A formal model of computation for sensory-based robotics , 1989, IEEE Trans. Robotics Autom..

[43]  Radhika Nagpal,et al.  Programmable self-assembly in a thousand-robot swarm , 2014, Science.

[44]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[45]  Daniele Nardi,et al.  Multirobot systems: a classification focused on coordination , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  Barbara Hayes-Roth,et al.  A Blackboard Architecture for Control , 1985, Artif. Intell..

[47]  Pericles A. Mitkas,et al.  RAPP System Architecture , 2014, IROS 2014.

[48]  Tomasz Kornuta,et al.  Diagnostic Requirements in Multi-robot Systems , 2014 .

[49]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[50]  Gaurav S. Sukhatme,et al.  Multiple Mobile Robot Systems , 2016, Springer Handbook of Robotics, 2nd Ed..

[51]  Reid G. Simmons,et al.  Robotic Systems Architectures and Programming , 2008, Springer Handbook of Robotics, 2nd Ed..

[52]  Bojan Nemec,et al.  Virtual Mechanism Approach for Dual-arm Manipulation , 2012, ICINCO.

[53]  Daniel Leidner,et al.  Knowledge-enabled parameterization of whole-body control strategies for compliant service robots , 2016, Auton. Robots.

[54]  Vijay Kumar,et al.  In-flight formation control for a team of fixed-wing aerial vehicles , 2016, 2016 International Conference on Unmanned Aircraft Systems (ICUAS).

[55]  Wei Li,et al.  Occlusion-Based Cooperative Transport with a Swarm of Miniature Mobile Robots , 2015, IEEE Transactions on Robotics.

[56]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[57]  Karsten Berns,et al.  Soft Robot Control with a Behaviour-Based Architecture , 2015 .

[58]  Karsten Berns,et al.  Formal verification of behaviour networks including sensor failures , 2015 .

[59]  Cezary Zielinski,et al.  Reconfigurable Agent Architecture for Robots Utilising Cloud Computing , 2015, Progress in Automation, Robotics and Measuring Techniques.

[60]  Manuel Serrano,et al.  Multitier programming in Hop , 2012, CACM.

[61]  Alexander Dietrich,et al.  Reactive Whole-Body Control: Dynamic Mobile Manipulation Using a Large Number of Actuated Degrees of Freedom , 2012, IEEE Robotics & Automation Magazine.

[62]  W. Sanderson,et al.  The coming acceleration of global population ageing , 2008, Nature.

[63]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[64]  Pawel Kaczmarek,et al.  Design for a Robotic Companion , 2015, Int. J. Humanoid Robotics.

[65]  Cezary Zielinski,et al.  Motion Generation in the MRROC++ Robot Programming Framework , 2010, Int. J. Robotics Res..

[66]  Cezary Zielinski,et al.  Rubik's cube as a benchmark validating MRROC++ as an implementation tool for service robot control systems , 2007, Ind. Robot.

[67]  Teresa Zielinska,et al.  Multifunctional walking quadruped , 2002, Robotica.

[68]  Giuseppe Loianno,et al.  Vision-Based Formation Control of Aerial Vehicles , 2014 .

[69]  Reid G. Simmons,et al.  First Results in the Coordination of Heterogeneous Robots for Large-Scale Assembly , 2000, ISER.

[70]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[71]  Rafael Capilla,et al.  Dynamic Variability Meets Robotics , 2015, Computer.

[72]  E. Nakano,et al.  Cooperational Control of the Anthropomorphous Manipulator "MELARM" , 1974 .

[73]  Cezary Zielinski,et al.  RAPP: A Robotic-Oriented Ecosystem for Delivering Smart User Empowering Applications for Older People , 2016, International Journal of Social Robotics.

[74]  Zack J. Butler,et al.  Distributed and Cellular Robots , 2008, Springer Handbook of Robotics.

[75]  S Cousins,et al.  ROS on the PR2 [ROS Topics] , 2010 .

[76]  Wen-Hong Zhu,et al.  Control of two industrial manipulators rigidly holding an egg , 1999 .

[77]  Karsten Berns,et al.  Formal Verification of Behaviour Networks Including Hardware Failures , 2014, IAS.

[78]  George Karagiannis,et al.  Relieving Robots from Their Burdens: The Cloud Agent Concept (Short Paper) , 2016, 2016 5th IEEE International Conference on Cloud Networking (Cloudnet).

[79]  Hajime Asama,et al.  Development of Task Assignment System Using Communication for Multiple Autonomous Robots , 1992, J. Robotics Mechatronics.

[80]  C. Zielinski A quasi-formal approach to structuring multi-robot system controllers , 2001, Proceedings of the Second International Workshop on Robot Motion and Control. RoMoCo'01 (IEEE Cat. No.01EX535).

[81]  Ève Coste-Manière,et al.  Architecture, the backbone of robotic systems , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).