Computational identification of receptive fields.

Natural stimuli elicit robust responses of neurons throughout sensory pathways, and therefore their use provides unique opportunities for understanding sensory coding. This review describes statistical methods that can be used to characterize neural feature selectivity, focusing on the case of natural stimuli. First, we discuss how such classic methods as reverse correlation/spike-triggered average and spike-triggered covariance can be generalized for use with natural stimuli to find the multiple relevant stimulus features that affect the responses of a given neuron. Second, ways to characterize neural feature selectivity while assuming that the neural responses exhibit a certain type of invariance, such as position invariance for visual neurons, are discussed. Finally, we discuss methods that do not require one to make an assumption of invariance and instead can determine the type of invariance by analyzing relationships between the multiple stimulus features that affect the neural responses.

[1]  H. K. HAltTLIn THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 2004 .

[2]  Liam Paninski,et al.  Statistical models for neural encoding, decoding, and optimal stimulus design. , 2007, Progress in brain research.

[3]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[4]  P. Dayan,et al.  Space and time in visual context , 2007, Nature Reviews Neuroscience.

[5]  Michael Eickenberg,et al.  Characterizing Responses of Translation-Invariant Neurons to Natural Stimuli: Maximally Informative Invariant Dimensions , 2012, Neural Computation.

[6]  J. Movshon,et al.  Pattern adaptation and cross-orientation interactions in the primary visual cortex , 1998, Neuropharmacology.

[7]  W Bialek,et al.  On the application of information theory to neural spike trains. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[8]  Gidon Felsen,et al.  A natural approach to studying vision , 2005, Nature Neuroscience.

[9]  Eero P. Simoncelli,et al.  Efficient and direct estimation of a neural subunit model for sensory coding , 2012, NIPS.

[10]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  E. Jaynes Probability theory : the logic of science , 2003 .

[13]  Y. Frégnac,et al.  The “silent” surround of V1 receptive fields: theory and experiments , 2003, Journal of Physiology-Paris.

[14]  Sanford Weisberg,et al.  ADAPTING FOR THE MISSING LINK , 1994 .

[15]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[16]  Joaquín Rapela,et al.  Estimating nonlinear receptive fields from natural images. , 2006, Journal of vision.

[17]  K. Sen,et al.  Spectral-temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds , 2022 .

[18]  Michael J. Berry,et al.  Selectivity for multiple stimulus features in retinal ganglion cells. , 2006, Journal of neurophysiology.

[19]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[20]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[21]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[22]  Jan Clemens,et al.  Nonlinear Computations Underlying Temporal and Population Sparseness in the Auditory System of the Grasshopper , 2012, The Journal of Neuroscience.

[23]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[24]  Tatyana O. Sharpee,et al.  Minimal Models of Multidimensional Computations , 2011, PLoS Comput. Biol..

[25]  Wu Li,et al.  Adaptive shape processing in primary visual cortex , 2011, Proceedings of the National Academy of Sciences.

[26]  Inés Samengo,et al.  Spike-triggered covariance: geometric proof, symmetry properties, and extension beyond Gaussian stimuli , 2012, Journal of Computational Neuroscience.

[27]  A. Hudspeth,et al.  Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[29]  A. Doupe,et al.  Translating birdsong: songbirds as a model for basic and applied medical research. , 2013, Annual review of neuroscience.

[30]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[31]  Liam Paninski,et al.  Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings , 2009, PLoS Comput. Biol..

[32]  M. Sahani,et al.  The Consequences of Response Nonlinearities for Interpretation of Spectrotemporal Receptive Fields , 2008, The Journal of Neuroscience.

[33]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[34]  J. Mendel,et al.  ePPR: a new strategy for the characterization of sensory cells from input/output data , 2010, Network.

[35]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[36]  T. Sharpee Comparison of information and variance maximization strategies for characterizing neural feature selectivity , 2007, Statistics in medicine.

[37]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[38]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[39]  Aurel A. Lazar,et al.  Channel Identification Machines , 2012, Comput. Intell. Neurosci..

[40]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[41]  Nicole C. Rust,et al.  In praise of artifice , 2005, Nature Neuroscience.

[42]  T. Sharpee,et al.  Estimating linear–nonlinear models using Rényi divergences , 2009, Network.

[43]  N. C. Singh,et al.  Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli , 2001 .

[44]  Mijung Park,et al.  Receptive Field Inference with Localized Priors , 2011, PLoS Comput. Biol..

[45]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[46]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[47]  M. Sahani,et al.  Cortical control of arm movements: a dynamical systems perspective. , 2013, Annual review of neuroscience.

[48]  Robert J. Butera,et al.  Sequential Optimal Design of Neurophysiology Experiments , 2009, Neural Computation.

[49]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[50]  Tatyana O Sharpee,et al.  On the importance of static nonlinearity in estimating spatiotemporal neural filters with natural stimuli. , 2008, Journal of neurophysiology.

[51]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[52]  C. Sherrington Integrative Action of the Nervous System , 1907 .

[53]  Qasim Zaidi,et al.  Three-dimensional shape from non-homogeneous textures: carved and stretched surfaces. , 2004, Journal of vision.

[54]  William Bialek,et al.  Maximally Informative “Stimulus Energies” in the Analysis of Neural Responses to Natural Signals , 2012, PloS one.

[55]  Michael J. Berry,et al.  Identifying Functional Bases for Multidimensional Neural Computations , 2013, Neural Computation.

[56]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[57]  Jonathan D. Victor,et al.  Simultaneously Band and Space Limited Functions in Two Dimensions, and Receptive Fields of Visual Neurons , 2003 .

[58]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[59]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[60]  Susan M. Menees,et al.  Dark phantom motion , 2004 .

[61]  Maneesh Sahani,et al.  Evidence Optimization Techniques for Estimating Stimulus-Response Functions , 2002, NIPS.

[62]  Ryan J. Rowekamp,et al.  Analyzing multicomponent receptive fields from neural responses to natural stimuli , 2011, Network.

[63]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[64]  N. C. Singh,et al.  Modulation spectra of natural sounds and ethological theories of auditory processing. , 2003, The Journal of the Acoustical Society of America.

[65]  Tatyana O. Sharpee,et al.  Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models , 2011, PLoS Comput. Biol..

[66]  D. C. Essen,et al.  Neurons in monkey visual area V2 encode combinations of orientations , 2007, Nature Neuroscience.

[67]  H. Jones,et al.  Context-dependent interactions and visual processing in V1 , 1996, Journal of Physiology-Paris.

[68]  Nicholas J. Priebe,et al.  Mechanisms underlying cross-orientation suppression in cat visual cortex , 2006, Nature Neuroscience.

[69]  M. A. Repucci,et al.  Responses of V1 neurons to two-dimensional hermite functions. , 2006, Journal of neurophysiology.

[70]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[71]  Jonathan D. Victor,et al.  Contextual modulation of V1 receptive fields depends on their spatial symmetry , 2009, Journal of Computational Neuroscience.

[72]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[73]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[74]  J D Victor,et al.  Spatial phase and the temporal structure of the response to gratings in V1. , 1998, Journal of neurophysiology.

[75]  T. Baker,et al.  Odour-plume dynamics influence the brain's olfactory code , 2001, Nature.

[76]  Katherine I. Nagel,et al.  Two-dimensional adaptation in the auditory forebrain. , 2011, Journal of neurophysiology.

[77]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[78]  R. Shapley,et al.  A method of nonlinear analysis in the frequency domain. , 1980, Biophysical journal.

[79]  Naftali Tishby,et al.  The minimum information principle and its application to neural code analysis , 2009, Proceedings of the National Academy of Sciences.

[80]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[81]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[82]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[83]  M. Sahani,et al.  Nonlinearities and Contextual Influences in Auditory Cortical Responses Modeled with Multilinear Spectrotemporal Methods , 2008, The Journal of Neuroscience.

[84]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[85]  Elad Schneidman,et al.  Stimulus-dependent Maximum Entropy Models of Neural Population Codes , 2012, PLoS Comput. Biol..

[86]  Eero P. Simoncelli Vision and the statistics of the visual environment , 2003, Current Opinion in Neurobiology.

[87]  W. Bialek,et al.  Features and dimensions: Motion estimation in fly vision , 2005, q-bio/0505003.

[88]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[89]  Steven W. Zucker,et al.  Shape-from-Shading and Cortical Computation: a new formulation , 2012 .

[90]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[91]  Il Memming Park,et al.  Bayesian Spike-Triggered Covariance Analysis , 2011, NIPS.

[92]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[93]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[94]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[95]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[96]  Robert Shapley,et al.  Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. , 2002, Journal of vision.

[97]  P. Z. Marmarelis,et al.  Analysis of Physiological Systems: The White-Noise Approach , 2011 .

[98]  William Bialek,et al.  The Information Content of Receptive Fields , 2003, Neuron.