Individual and co-operative learning with interactive animated pictures

Computer-based multimedia learning environments make it possible to present interactive animated pictures, which can be manipulated for active exploratory learning and which allow the dynamic behavior of complex subject matter to be displayed. Due to the large range of possibilities for exploratory interaction, such learning environments seem well suited for co-operative learning in which different learners analyse the presented subject matter from different perspectives. This paper first describes a theoretical framework for learning from texts and pictures together with an analysis of possible effects of animation and interactivity on knowledge acquisition. It then presents two empirical studies in which knowledge acquisition from interactive animated pictures was compared with knowledge acquisition from static pictures under the conditions of individual learning (Study I) and of cooperative learning (Study II). In Study I, learning with interactive animated pictures resulted in a superior encoding of detail information, but did not facilitate performance of mental simulation tasks. In Study II, learning with interactive animated pictures resulted both in inferior encoding of detail information and poorer results in mental simulations. These findings and the analysis of discourse protocols of subjects’ co-operation suggest that exploratory learning with interactive animated pictures is associated with extraneous cognitive load and that this load can be further increased by the co-ordination demands of co-operative learning. Although animated pictures may provide external support for mental simulations, they do not appear to be generally beneficial for learning, because they can prevent individuals from performing relevant cognitive processes.RésuméLes environnements informatiques d’apprentissage donnent la possibilité de présenter des images interactives animées qui peuvent être manipulées pour un apprentissage actif par exploration et qui permettent de visualiser le fonctionnement dynamique-d’un contenu d’enseignement complexe. Du fait du grand nombre de possibilités d’interactions d’explorations, de tels environnements d’apprentissage semblent bien adaptés pour un apprentissage coopératif dans lequel différents apprenants analysent la matière présentée de différents points de vue. L’acquisition de connaissance à partir d’images interactives animées a été comparée à l’acquisition de connaissance à partir d’images statiques dans des conditions d’apprentissage individuel (première étude) et d’apprentissage coopératif (deuxième étude). Dans la première étude, l’apprentissage avec des images interactives animées a conduit à un encodage supérieur du détail d’information, mais n’a pas facilité les performances dans des tâches de simulation mentale. Dans la seconde étude, l’apprentissage avec des images interactives animées a conduit simultanément à un encodage inférieur du détail d’information et à des résultants médiocres des simulations mentales. Ces résultats et les analyses des protocoles du discours des sujets coopérants suggèrent que l’apprentissage par exploration avec des images interactives animées induit une charge cognitive sur les détails, et que cette charge peut être encoure accrue par les contraintes de coordination liées à l’apprentissage en coopération. Bien que les images animées puissent fournir un support externe aux simulations mentales, elles n’apparaissent pas comme étant en général bénéfiques pour l’apprentissage du fait qu’elles peuvent gêner les individus dans la mise en oeuvre de processus cognitifs pertinents.

[1]  Heinz Mandl,et al.  Learning Issues for Intelligent Tutoring Systems , 1988, Cognitive Science.

[2]  T. Shuell The role of the student in learning from instruction , 1988 .

[3]  S. Ullman Visual routines , 1984, Cognition.

[4]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[5]  R. Mayer,et al.  For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. , 1994 .

[6]  Daniel L. Schwartz,et al.  Reasoning about the referent of a picture versus reasoning about the picture as the referent: An effect of visual realism , 1995, Memory & cognition.

[7]  P. Chandler,et al.  Why Some Material Is Difficult to Learn , 1994 .

[8]  Erik,et al.  Comprehension of Graphics in Text. , 1993 .

[9]  Richard K. Lowe Background knowledge and the construction of a situational representation from a diagram , 1996 .

[10]  P. Johnson-Laird Mental models , 1989 .

[11]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[12]  Kenneth D. Forbus,et al.  Qualitative Spatial Reasoning: The Clock Project , 1991, Artif. Intell..

[13]  Allan Collins,et al.  THE COMPUTER AS A TOOL FOR LEARNING THROUGH REFLECTION , 1986 .

[14]  E. Cohen Restructuring the Classroom: Conditions for Productive Small Groups , 1994 .

[15]  W. Kintsch,et al.  Memory and cognition , 1977 .

[16]  Robert B. Kozma,et al.  A reply: Media and methods , 1994 .

[17]  Albert Weale,et al.  Forms of Representation , 1999 .

[18]  A. Paivio,et al.  Dual coding theory and education , 1991 .

[19]  R. Mayer,et al.  A generative theory of textbook design: Using annotated illustrations to foster meaningful learning of science text , 1995 .

[20]  W. Schnotz Instructional implications of text processing research , 1988 .

[21]  Hans Spada,et al.  Learning in Humans and Machines , 1995 .

[22]  P. Johnson-Laird,et al.  Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness , 1985 .

[23]  G. Salomon Interaction of media, cognition and learning , 1979 .

[24]  John Sweller,et al.  Cognitive Load During Problem Solving: Effects on Learning , 1988, Cogn. Sci..

[25]  M. Hegarty Mental animation: inferring motion from static displays of mechanical systems. , 1992, Journal of experimental psychology. Learning, memory, and cognition.

[26]  W. Howard Levie,et al.  Effects of text illustrations: A review of research , 1982 .

[27]  H. Mandl,et al.  Kooperatives Lernen: Die Frage nach dem Notwendigen und dem Ersetzbaren , 1995 .

[28]  Johan de Kleer,et al.  A Qualitative Physics Based on Confluences , 1984, Artif. Intell..

[29]  Joan K. Gallini,et al.  When Is an Illustration Worth Ten Thousand Words , 1990 .

[30]  R. Kozma Will media influence learning? Reframing the debate , 1994 .

[31]  Steven Pinker,et al.  A theory of graph comprehension. , 1990 .

[32]  M Hegarty,et al.  Mental animation in the visuospatial sketchpad: Evidence from dual-task studies , 1997, Memory & cognition.

[33]  P. Dillenbourg,et al.  The evolution of research on collaborative learning , 1996 .

[34]  Gary J. Anglin,et al.  On Empirically Validating Functions of Pictures in Prose , 1987 .

[35]  J. Greeno,et al.  Transfer of situated learning , 1996 .

[36]  W. Kintsch,et al.  Strategies of discourse comprehension , 1986 .

[37]  R. Mayer,et al.  Multimedia learning: Are we asking the right questions? , 1997 .

[38]  L. Resnick The 1987 Presidential Address Learning In School and Out , 1987 .

[39]  William Winn,et al.  Chapter 1 Contributions of Perceptual and Cognitive Processes to the Comprehension of Graphics , 1994 .

[40]  P. Chandler,et al.  Cognitive Load Theory and the Format of Instruction , 1991 .

[41]  M. S. Mayzner,et al.  Cognition And Reality , 1976 .

[42]  Lev Vygotsky Denken und Sprechen , 1964 .

[43]  Wolfgang Schnotz On the relation of dual coding and mental models in graphics comprehension , 1993 .

[44]  Christian Freksa,et al.  Qualitative spatial reasoning , 1990, Forschungsberichte, TU Munich.

[45]  Ok-choon Park,et al.  Hypermedia: functional features and research issues , 1991 .