On the Triple-Error-Correcting Cyclic Codes with Zero Set {1, 2 i + 1, 2 j + 1}

We consider a class of 3-error-correcting cyclic codes of length 2m −1 over the two-element field $\mathbb{F}_2$ . The generator polynomial of a code of this class has zeroes $\alpha, \alpha^{2^i+1}$ and $\alpha^{2^j+1}$ , where α is a primitive element of the field ${\mathbb{F}_{2^m}}$ . In short, {1, 2i +1, 2j +1} refers to the zero set of these codes. Kasami in 1971 and Bracken and Helleseth in 2009, showed that cyclic codes with zeroes {1, 2l+1, 23l+1} and {1, 2l+1, 22l+1} respectively are 3-error correcting, where $\gcd(\ell,m) = 1$ . We present a sufficient condition so that the zero set {1, 2l+1, 2p l+1}, $\gcd(\ell,m)=1$ gives a 3-error-correcting cyclic code. The question for p >3 is open. In addition, we determine all the 3-error-correcting cyclic codes in the class {1, 2i +1, 2j +1} for m ${\mathbb{F}_{2^m}}$ . We apply the improved Schaub algorithm in order to find a lower bound of the spectral immunity of a Boolean function related to the zero set {1, 2i +1, 2j +1}.

[1]  Tor Helleseth,et al.  On a conjectured ideal autocorrelation sequence, a related triple-error correcting cyclic code , 2000, IEEE Trans. Inf. Theory.

[2]  Antoine Joux,et al.  Fast Correlation Attacks: An Algorithmic Point of View , 2002, EUROCRYPT.

[3]  J. Massey The Discrete Fourier Transform in Coding and Cryptography , 1999 .

[4]  Jeffrey S. Leon,et al.  Computing automorphism groups of error-correcting codes , 1982, IEEE Trans. Inf. Theory.

[5]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[6]  Kees Roos,et al.  A new lower bound for the minimum distance of a cyclic code , 1983, IEEE Trans. Inf. Theory.

[7]  T. Schaub A linear complexity approach to cyclic codes , 1988 .

[8]  Tor Helleseth,et al.  Triple-error-correcting BCH-like codes , 2009, 2009 IEEE International Symposium on Information Theory.

[9]  Antonia W. Bluher,et al.  On xq+1+ax+b , 2004, Finite Fields Their Appl..

[10]  Daniel Augot,et al.  Bounds on the minimum distance of the duals of BCH codes , 1996, IEEE Trans. Inf. Theory.

[11]  Nicolas Sendrier,et al.  Finding the permutation between equivalent linear codes: The support splitting algorithm , 2000, IEEE Trans. Inf. Theory.

[12]  Marcel van der Vlugt Non-BCH triple-error-correcting codes , 1996, IEEE Trans. Inf. Theory.

[13]  Aggelos Kiayias,et al.  Traitor Tracing with Constant Transmission Rate , 2002, EUROCRYPT.

[14]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .

[15]  P. Godlewski,et al.  Coding Theory and Applications , 1986, Lecture Notes in Computer Science.

[16]  Pascale Charpin,et al.  Open problems on cyclic codes , 2009 .

[17]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[18]  R. Blahut Algebraic Codes for Data Transmission , 2002 .

[19]  Tor Helleseth,et al.  Simplifying algebraic attacks with univariate analysis , 2011, 2011 Information Theory and Applications Workshop.

[20]  Carlos R. P. Hartmann,et al.  Generalizations of the BCH Bound , 1972, Inf. Control..

[21]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.

[22]  Tadao Kasami,et al.  The Weight Enumerators for Several Clauses of Subcodes of the 2nd Order Binary Reed-Muller Codes , 1971, Inf. Control..

[23]  James L. Massey,et al.  Linear Complexity in Coding Theory , 1986, Coding Theory and Applications.

[24]  Jacques Wolfmann,et al.  New bounds on cyclic codes from algebraic curves , 1988, Coding Theory and Applications.

[25]  Richard M. Wilson,et al.  On the minimum distance of cyclic codes , 1986, IEEE Trans. Inf. Theory.

[26]  Willi Meier,et al.  Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.