Chaos Theory in Operations Research

The purpose of this paper is to illustrate the potential importance of non-linear dynamical systems theory in OR. After a brief introduction into some basic concepts. We study an advertising diffusion model to exemplify the composition of chaos and optimalily in dynamic programming. It turns out that economies of scale may imply period three cycle and consequently topological chaos. Furthermore, we present an outlook to further potential applications of non-linear dynamical systems in OR/MS queing systems are briefly discussed whose random coding fluctuations are endogenously generated in a pure deterministic framework. Among the various paradigms favouring complex behaviour are dynamic strategic interactions, slow-fast systems, and cellular automata.

[1]  Michele Boldrin,et al.  Equilibrium models displaying endogenous fluctuations and chaos: A survey , 1988 .

[2]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[3]  Grebogi,et al.  Using chaos to direct trajectories to targets. , 1990, Physical review letters.

[4]  Peter Grassberger,et al.  Chaos and diffusion in deterministic cellular automata , 1984 .

[5]  J. P. Gould,et al.  Diffusion Processes and Optimal Advertising Policy , 1976 .

[6]  Gustav Feichtinger,et al.  Complex dynamics and control of arms race , 1997, Eur. J. Oper. Res..

[7]  R. Bellman,et al.  Linear Programming and Economic Analysis. , 1960 .

[8]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[9]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[10]  Cars H. Hommes,et al.  Chaotic dynamics in economic models: some simple case studies , 1991 .

[11]  N. Macdonald Biological Delay Systems: Linear Stability Theory , 1989 .

[12]  A. Odlyzko,et al.  Algebraic properties of cellular automata , 1984 .

[13]  Carsten Knudsen,et al.  Chaos Without Nonperiodicity , 1994 .

[14]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[15]  Gordon F. Newell,et al.  Applications of queueing theory , 1971 .

[16]  Richard Hollis Day,et al.  An introduction to dynamical systems and market mechanisms , 1994 .

[17]  Kazuo Nishimura,et al.  Competitive equilibrium cycles , 1985 .

[18]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[19]  Günter Haag,et al.  How to control a chaotic economy? , 1996 .

[20]  Tapan Mitra,et al.  Periodic and chaotic programs of optimal intertemporal allocation in an aggregative model with wealth effects , 1994 .

[21]  M. Yano,et al.  Chaotic Solutions in Dynamic Linear Programming , 1996 .

[22]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[23]  Gustav Feichtinger,et al.  Chaos in nonlinear dynamical systems exemplified by an R & D model , 1993 .

[25]  Herbert Dawid,et al.  Complex optimal policies in an advertising diffusion model , 1995 .

[26]  Robert B. Cooper,et al.  Queueing systems, volume II: computer applications : By Leonard Kleinrock. Wiley-Interscience, New York, 1976, xx + 549 pp. , 1977 .

[27]  Ashok Erramilli,et al.  Oscillations and Chaos in a Flow Model of a Switching System , 1991, IEEE J. Sel. Areas Commun..

[28]  Nancy L. Stokey,et al.  Recursive methods in economic dynamics , 1989 .

[29]  Sergio Rinaldi,et al.  A separation condition for the existence of limit cycles in slow-fast systems , 1991 .

[30]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[31]  Thomas B. Kepler,et al.  Chaos in a neural network circuit , 1990 .

[32]  Michael Kopel Komplexe Unternehmensdynamik: chaotische dynamische Systeme in der Betriebswirtschaftlehre , 1994 .

[33]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[34]  Richard F. Hartl,et al.  On the optimality of cyclical employment policies: A Numerical Investigation , 1986 .

[35]  H. Lorenz Nonlinear Dynamical Economics and Chaotic Motion , 1989 .

[36]  Donald C. Keenan,et al.  Competition, collusion, and chaos , 1993 .

[37]  Gustav Feichtinger,et al.  Chaos in a simple deterministic queueing system , 1994, Math. Methods Oper. Res..

[38]  L. Montrucchio,et al.  On the indeterminacy of capital accumulation paths , 1986 .

[39]  E. Dockner,et al.  Analysis of Nash equilibria in a class of capital accumulation games , 1996 .

[40]  Gerhard Sorger Minimum impatience theorems for recursive economic models , 1992 .

[41]  Discrete time dynamic game models for advertising competition in a duopoly , 1995 .

[42]  Michele Boldrin,et al.  Persistent Oscillations and Chaos in Dynamic Economic Models: Notes for a Survey , 1988 .

[43]  Michael Kopel,et al.  Improving the performance of an economic system: Controlling chaos , 1997 .

[44]  Christian V. Forst,et al.  A nonlinear dynamical model for the dynastic cycle , 1996 .

[45]  A. N. Sharkovskiĭ COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .

[46]  E. Phelps Microeconomic Foundations of Employment and Inflation Theory , 1970 .

[47]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .