Synthesis of In-Plane Oriented Tin Sulfides by Organosulfur-Mediated Sulfurization of Ultrathin SnO2 Films

[1]  Sangyoon Lee,et al.  Atomic‐Layer‐Deposition‐Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications , 2021, Advanced materials.

[2]  H. H. Güllü,et al.  Investigation of band gap energy versus temperature for SnS2 thin films grown by RF-magnetron sputtering , 2020 .

[3]  Joo Hyung Park,et al.  Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells , 2020 .

[4]  Zhongming Wei,et al.  Visible Phototransistors Based on Vertical Nanolayered Heterostructures of SnS/SnS2 p–n and SnSe2/SnS2 n–n Nanoflakes , 2020 .

[5]  C. Hwang,et al.  Cation-Regulated Transformation for Continuous Two-Dimensional Tin Monosulfide , 2020 .

[6]  M. Placidi,et al.  Structural and vibrational properties of α- and π-SnS polymorphs for photovoltaic applications , 2020, Acta Materialia.

[7]  Seung-Beck Lee,et al.  Atomic layer deposition growth of SnS2 films on diluted buffered oxide etchant solution-treated substrate , 2019 .

[8]  Jinzhong Zhang,et al.  Large-Scale Growth and Field-Effect Transistors Electrical Engineering of Atomic-Layer SnS2. , 2019, Small.

[9]  Hyunwoo Yuk,et al.  Development of a SnS Film Process for Energy Device Applications , 2019, Applied Sciences.

[10]  Mengjun Wang,et al.  Facile synthesis of tin monosulfide nanosheets via physical vapour deposition and their near-infrared photoresponse , 2019, AIP Advances.

[11]  D. Mohan,et al.  The effect of in-situ and post deposition annealing towards the structural optimization studies of RF sputtered SnS and Sn2S3 thin films for solar cell application , 2019, Solar Energy.

[12]  Travis Shihao Hu,et al.  Shape Engineered Synthesis of Atomically Thin 1T-SnS2 Catalyzed by Potassium Halides. , 2019, ACS nano.

[13]  A. F. da Cunha,et al.  High SnS phase purity films produced by rapid thermal processing of RF-magnetron sputtered SnS2-x precursors , 2019, Applied Surface Science.

[14]  Vinaya Kumar Arepalli,et al.  Influence of working pressure on the structural, optical, and electrical properties of RF-sputtered SnS thin films , 2018, Superlattices and Microstructures.

[15]  H. Bender,et al.  Nucleation and growth mechanism of 2D SnS2 by chemical vapor deposition: initial 3D growth followed by 2D lateral growth , 2018 .

[16]  Yi Cui,et al.  Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics , 2018, Nature Nanotechnology.

[17]  Qingsheng Zeng,et al.  Novel Optoelectronic Devices: Transition‐Metal‐Dichalcogenide‐Based 2D Heterostructures , 2018 .

[18]  Si-Hyun Park,et al.  Preparation of SnS 2 thin films by conversion of chemically deposited cubic SnS films into SnS 2 , 2017 .

[19]  Artur R. Davoyan,et al.  Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook , 2017, 1710.08917.

[20]  L. Dai,et al.  Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides , 2017, Advanced science.

[21]  Cheol Seong Hwang,et al.  Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures , 2017 .

[22]  Yu-Min Shen,et al.  SnSx (x = 1, 2) nanocrystals as effective catalysts for photoelectrochemical water splitting , 2017 .

[23]  A. Ceylan Synthesis of SnS thin films via high vacuum sulfidation of sputtered Sn thin films , 2017 .

[24]  Yuanyuan Xie,et al.  Atomic Layer Deposition of Alumina Coatings onto SnS2 for Lithium-Ion Battery Applications , 2017 .

[25]  Jiamin Xue,et al.  Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy. , 2017, ACS nano.

[26]  Aaron M. Lindenberg,et al.  2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications , 2016 .

[27]  F. Pan,et al.  Few-Layer Tin Sulfide: A New Black-Phosphorus-Analogue 2D Material with a Sizeable Band Gap, Odd–Even Quantum Confinement Effect, and High Carrier Mobility , 2016 .

[28]  R. Yousefi,et al.  SnS nanosheet films deposited via thermal evaporation: The effects of buffer layers on photovoltaic performance , 2016 .

[29]  Yiping Wang,et al.  Tuning the Phase and Optical Properties of Ultrathin SnSx Films , 2016 .

[30]  Zafer Mutlu,et al.  Phase Engineering of 2D Tin Sulfides. , 2016, Small.

[31]  Jian Zhen Ou,et al.  Biosensors Based on Two-Dimensional MoS2 , 2016 .

[32]  Byoung Hun Lee,et al.  Chemical Sensing of 2D Graphene/MoS2 Heterostructure device. , 2015, ACS applied materials & interfaces.

[33]  Myoung-Jae Lee,et al.  Deterministic Two-Dimensional Polymorphism Growth of Hexagonal n-Type SnS₂ and Orthorhombic p-Type SnS Crystals. , 2015, Nano letters.

[34]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[35]  Shun-Li Shang,et al.  Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing , 2015, Journal of Electronic Materials.

[36]  Joonhyung Lee,et al.  Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules , 2014, Scientific Reports.

[37]  Peter Sutter,et al.  Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. , 2014, ACS nano.

[38]  S. F. Wang,et al.  Growth of highly textured SnS on mica using an SnSe buffer layer , 2014 .

[39]  D. Tsai,et al.  Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.

[40]  Yanrong Li,et al.  Two-dimensional semiconductors with possible high room temperature mobility , 2014, Nano Research.

[41]  Hyungtak Seo,et al.  Tuning the electronic structure of tin sulfides grown by atomic layer deposition. , 2013, ACS applied materials & interfaces.

[42]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[43]  Chengwu Shi,et al.  Influence of annealing on characteristics of tin disulfide thin films by vacuum thermal evaporation , 2012 .

[44]  S. Lau,et al.  Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer , 2012 .

[45]  K. Boubaker,et al.  SnxSy compounds growth by controlled sulfurisation of SnO2 , 2011 .

[46]  S. Bent,et al.  Atomic layer deposition of ZnS via in situ production of H2S , 2010 .

[47]  J. Hupp,et al.  Atomic layer deposition of tin oxide films using tetrakis(dimethylamino) tin , 2008 .

[48]  A. Norman From Elemental Sulfur , 2007 .

[49]  I. Parkin,et al.  Deposition of tin sulfide thin films from tin(IV) thiolate precursors , 2001 .

[50]  B Thangaraju,et al.  Spray pyrolytic deposition and characterization of SnS and SnS2 thin films , 2000 .

[51]  Ivan P. Parkin,et al.  Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass , 1999 .

[52]  W. Jaegermann,et al.  Molecular-Beam Epitaxy Growth of Thin-Films of Sns2 and Snse2 on Cleaved Mica and the Basal Planes of Single-Crystal Layered Semiconductors - Reflection High-Energy Electron-Diffraction, Low-Energy-Electron Diffraction, Photoemission, and Scanning-Tunneling-Microscopy Atomic-Force Microscopy Charact , 1995 .

[53]  P. Favreau,et al.  Use of Lead Bis(butylthiolate) Compounds in a New Low-Temperature Route to Highly Crystalline Lead Sulfide: Identity and Source of Reaction Byproducts , 1994 .

[54]  H. Bock,et al.  Unstable Intermediates in the Gaseous Phase: The Thermal Decomposition of Alkyl Sulfides RSnR , 1977 .

[55]  G. Martin,et al.  Gas-phase thermolysis of sulphur compounds. Part I. Di-t-butyl disulphide , 1976 .

[56]  C. J. Thompson,et al.  Thermal decomposition of sulfur compounds. I. 2-methyl-2-propanethiol , 1952 .

[57]  L. B. Parsons,et al.  THE PREPARATION AND PROPERTIES OF THE PERSULFIDES OF HYDROGEN. , 1921 .