Handling equality constraints in evolutionary optimization

Over the last few decades several methods have been proposed for handling functional constraints while solving optimization problems using evolutionary algorithms (EAs). However, the presence of equality constraints makes the feasible space very small compared to the entire search space. As a consequence, the handling of equality constraints has long been a difficult issue for evolutionary optimization methods. This paper presents a Hybrid Evolutionary Algorithm (HEA) for solving optimization problems with both equality and inequality constraints. In HEA, we propose a new local search technique with special emphasis on equality constraints. The basic concept of the new technique is to reach a point on the equality constraint from the current position of an individual solution, and then explore on the constraint landscape. We believe this new concept will influence the future research direction for constrained optimization using population based algorithms. The proposed algorithm is tested on a set of standard benchmark problems. The results show that the proposed technique works very well on those benchmark problems.

[1]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[2]  Onur BOYABATLI,et al.  Parameter Selection in Genetic Algorithms , 2004 .

[3]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Charles S. Newton,et al.  Evolutionary Optimization (Evopt): A Brief Review And Analysis , 2003, Int. J. Comput. Intell. Appl..

[6]  Adriana Menchaca-Mendez,et al.  A new proposal to hybridize the Nelder-Mead method to a differential evolution algorithm for constrained optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[7]  Ruhul A. Sarker,et al.  Analyzing the Simple Ranking and Selection Process for Constrained Evolutionary Optimization , 2008, Journal of Computer Science and Technology.

[8]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[9]  Steven Orla Kimbrough,et al.  On a Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm for constrained optimization: Distance tracing and no free lunch , 2008, Eur. J. Oper. Res..

[10]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[11]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[12]  Carlos A. Coello Coello,et al.  Boundary Search for Constrained Numerical Optimization Problems With an Algorithm Inspired by the Ant Colony Metaphor , 2009, IEEE Transactions on Evolutionary Computation.

[13]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[14]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[15]  Efrén Mezura-Montes,et al.  Differential evolution in constrained numerical optimization: An empirical study , 2010, Inf. Sci..

[16]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[17]  Ruhul A. Sarker,et al.  A Simple Ranking and Selection for Constrained Evolutionary Optimization , 2006, SEAL.

[18]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[19]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[20]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[21]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[22]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[23]  T. Ray,et al.  An improved evolutionary algorithm for solving multi-objective crop planning models , 2009 .

[24]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[25]  Erfu Yang,et al.  A comparative study of genetic algorithm parameters for the inverse problem-based fault diagnosis of liquid rocket propulsion systems , 2007, Int. J. Autom. Comput..

[26]  Gary G. Yen,et al.  A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[27]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[28]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[29]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[30]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[31]  C. Coello,et al.  CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE , 2000 .

[32]  Gregory W. Corder,et al.  Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach , 2009 .

[33]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[34]  Ruhul A. Sarker,et al.  Search space reduction technique for constrained optimization with tiny feasible space , 2008, GECCO '08.

[35]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[36]  Ruhul A. Sarker,et al.  AMA: a new approach for solving constrained real-valued optimization problems , 2009, Soft Comput..

[37]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[38]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[39]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[40]  Tapabrata Ray,et al.  Genetic algorithm for solving a gas lift optimization problem , 2007 .

[41]  Mehmet Fatih Tasgetiren,et al.  A Multi-Populated Differential Evolution Algorithm for Solving Constrained Optimization Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[42]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.